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PREFACE 

The purpose of this study is to develop an accurate analytical model for the aircraft 

departure process at a major airport. The primary need was for a model which improves 

understanding of the performance of an airport departure queue. 

The models developed provide an improved capability to determine an effective 

service rate for departing aircraft. In addition to providing a more accurate representation 

of the actual process, the models should improve a user's ability to predict the time and 

magnitude of the occurrence of significant patterns of delays. The models also provide a 

great deal of flexibility in the modeling of the airport departure operations by employing a 

modeling technique called the method of stages. This method enables the user to input 

more accurate probability distributions for the service time and still maintain the 

advantages of a Markovian model. The models also employ solution algorithms which 

improve solution times over the methods used previously. 

There are several people whose support and guidance was crucial to the success 

of this thesis. First of all I would like to thank my thesis advisor, Lt Col Dennis Dietz, for 

his superior instruction and guidance. He kept me focused on the task at hand, 

encouraged me when things were going well, and urged me on when I needed it most. I 

also need to thank Dr. Peter Hovey for his support and insights. Finally, I thank my wife 

Marsha and my children, Jessica and Brandon, for their understanding. More importantly, 

I thank them for occassionally reminding me that I had a life other than working on this 

research. Joseph E. Hebert 
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AFIT/GOA/ENS/95M-02 

Abstract 

This study develops improved analytical models to represent the non- 

homogeneous aircraft departure process at a major airport. Previous models have 

assumed that the system entry process (demands for service) and the system service 

process (take-offs) for the aircraft departure system are strictly Markovian. The models 

developed in this study expand on these Markovian models by employing the method of 

stages. This technique increases the model's ability to accurately represent the service 

time distribution, while maintaining the advantages of the Markovian model. In addition, 

the models in this study employ solution algorithms which are much more efficient than 

methods previously used. The models were developed using data collected at LaGuardia 

Airport in June 1994. 

Three different models are developed and compared. All three assume a 

Markovian system entry process, but they all utilize different methods to represent the 

service (take-off) process. The first model assumes a Markovian service process. The use 

of this representation is shown to be reasonable and the results provide a good correlation 

to the actual system performance observed. The second model employs an Erlang 

distribution to represent the service time. This distribution supports the use of a 

Markovian model through the use of the method of stages. At the same time, the use of 

the Erlang distribution affords the model user the flexibility to better match the actual 

service time distribution in order to create the most accurate model. This model's results 



also correlate well with the actual airport operations. Finally, a server absence model was 

developed. This model explicitly represents the periods of time when the runway (server) 

is unavailable to service the departing aircraft. Although this model showed promise of 

being the most accurate of the three, it also proved to be the most difficult and time 

consuming to employ. 

The key feature of the aircraft departure process is its non-homogeneous nature. 

As a result, the most important aspect of the models developed is their ability to generate 

expected queue performance measures after finite amounts of time. These models should 

improve the user's ability to determine the effective service rate and to predict the 

occurrence of future patterns of delay. 
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ANALYSIS AND MODELING OF AN AIRPORT DEPARTURE PROCESS 

1. Introduction 

1.1 Background 

The Federal Aviation Administration (FAA) has expressed a need to better 

understand the factors that can lead to aircraft taxi delays. Li 1994, they requested 

research support from the Air Force Institute of Technology to study this area. In 

particular, the FAA wanted an accurate representation of the departure delay process in 

order to better understand how the process behaves and to identify the most significant 

causal factors. LaGuardia Airport was selected to provide the data for this study because 

it experiences significant departure delays and yet it does not have an excessive amount of 

traffic. The data was recorded from 1 to 7 June, 1994. 

1.2 Initial Research 

Initial analysis of the data revealed that the departure delay process was very time 

dependent. Since the rate at which aircraft left their departure gates varied greatly with 

the time of day, the occurrence of the most significant delays varied likewise. In addition, 

it was discovered during the initial research that several institutions have been developing 

methods for predicting aircraft take-off times for use by the Enhanced Traffic 

Management System (ETMS). Therefore, this research effort focused on developing an 

analytical model which describes and predicts the occurrence of significant patterns of 

aircraft departure delays.   In addition to providing a more accurate means of airport 
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capacity estimation, this study should complement ongoing take-off time prediction 

efforts. 

1.3 Definition of Terms 

In order to improve the reader's understanding of the analysis to follow, the terms 

that will be used later in this report are now defined. 

Departure queue ~ The line consisting of aircraft waiting for their turn to take 

off. 

Departure system - The entire departure process being modeled. This includes 

all aircraft in the departure queue and any departing aircraft that has exclusive use of the 

departure runway environment. An aircraft enters the system when it joins the end of the 

departure queue or it is given immediate clearance to take off (in the absence of a queue). 

An aircraft departs the system when it has completed its take-off and cleared the runway 

environment sufficiently for another aircraft to be granted take-off clearance. 

Pushback - The point in time when an aircraft is pushed away from the departure 

gate so that it may commence taxi-out. This is also known as the gate departure time. 

Demand for service — The point in time when an aircraft is ready to be granted 

access to the runway. This does not imply that the runway is available for this aircraft to 

use. If other aircraft are already waiting for service, then the occurrence of a demand for 

service means that an aircraft has entered the end of the departure queue to wait its turn 

for take-off. 

Taxi-out time - The time interval between pushback and demand for service. 
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Roll-out time - The time interval between pushback and the start of the aircraft 

take-off. This time includes taxi-out time and time spent waiting in the queue. 

Aircraft departure - An aircraft take-off. 

Aircraft arrival ~ An aircraft landing. 

Airport departure capacity - The maximum sustainable take-off rate at the 

airport for a given set of conditions. 

Fractional departure capacity ~ The effective maximum sustainable take-off rate 

for the aircraft from the eight major airlines which are represented in the data set. 

1.4 Problem Statement 

The aircraft departure process at major airports needs to be better understood. In 

addition, improvement is needed in the ability to predict aircraft departure delays under 

various conditions. 

1.5 Objectives 

The primary objective of this study is to develop an accurate analytical model of 

the aircraft departure process at LaGuardia airport. Related objectives involve 

demonstrating how this model improves understanding of the departure process and how 

the model might be useful for delay prediction. 

1.6 Scope 

The models developed are based on one week of data from LaGuardia airport. 

These models should improve the estimation of airport departure capacity experienced 

under various conditions. In addition, the models and methods used in this study should 
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facilitate the accurate prediction of aircraft departure delays. Finally, the models should 

aid in the identification of the most significant factors for airport departure delays. 

Although this research effort is based on the modeling of a single runway departure 

process, the modeling approach used should have applications for other situations and 

other airports. 

1.7 Approach 

Initial data analysis reveals that the aircraft departure delay patterns are clearly 

non-stationary. Therefore, it is evident that a useful model of this system requires 

transitory analysis. Since it is possible to estimate the transitory state probabilities for a 

Markovian model, primary attention is focused on developing an accurate Markovian 

model of the system. 

All of the models developed in this study are single server queuing models with 

Markovian entry (demand for service) processes. LaGuardia has two intersecting 

runways. Normal operating configurations assign one runway as the primary departure 

runway. Therefore, the models developed all use a single server. Determination of the 

demand for service process is relatively straight forward. It is determined to be closely 

related to the pushback process. When the pushback data is analyzed in blocks of time for 

which the rate appears homogeneous, the process is discovered to fit a Poisson 

distribution, which supports a Markovian model. 

The determination of the service (take-off) rate is more difficult It is assumed that 

there was always a queue present during the periods of time when a significant pattern of 

aircraft departure delays were observed. When the time between aircraft take-offs is 

1-4 



analyzed during these conditions, it is found that the empirical distribution can be 

reasonably modeled with an exponential distribution. However, it is also apparent that 

these times can be better represented by an Erlang distribution or a probabilistic mixture of 

the Erlang distribution and a convolution of Erlang distributions. These service time 

representations are the foundation of the two primary models used in this study. 

The service process is modeled in stages, which allows the above representations 

for the service time distributions to be used in the Markovian models. The transitory state 

probabilities for these Markovian models are approximated and then used to estimate 

queue lengths and waiting times.  The analysis results are based on the comparison of the 

model inputs to the model outputs and the actual observed queue conditions. The solution 

methods used are based on an approximation technique known as uniformization (16:286) 

1.8 Summary of Results 

When the models developed are applied to the departure delays observed at LGA, 

it becomes evident that the effective service rate for the aircraft from the eight major 

airlines represented in the data set was different than reported. Most of the time, a single 

value of this fractional departure capacity is fairly accurate in reproducing the pattern of 

departure delays observed. It will be shown that these models help identify the actual 

departure capacity observed under a certain set of conditions. 

When the fractional departure capacity is accurately estimated for the conditions, it 

is possible to predict the pattern of future delays. The estimate may be determined from a 

historical application of these models, or to the recent system conditions experienced at 

the airport. In other words, the closest estimate for the departure capacity from an hour 
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just ended might be used as the departure capacity for the next hour. In addition, the 

current observed departure delays could be used to define the current state of the system. 

This state could then be used as the initial condition in the model run for the next time 

period.  It will be shown how the models developed can aid in the determination of the 

airport's effective capacity and how these models might be useful for the prediction of 

actual queues and delays. 

1.9 Thesis Outline 

Chapter 2 provides a literature review for applicable works in the areas of airport 

delay analysis and queuing theory solution techniques. Chapter 3 provides a detailed 

analysis of the LaGuardia data set used as the basis for this research effort. It includes 

initial analysis conclusions, and appropriate probability distribution models for the 

processes observed. Chapter 4 presents the development of the three models used in this 

study: the M(t)/M/1 queue model, the M(t)/Ek/1 queue model and the M(t)/Ek/1 queue 

model with random server absences. Chapter 5 goes into detail on the estimation of the 

queue performance measures for each model. The discussion starts with an explanation of 

how the rate matrix is created and how it is used to estimate the transition matrix. The 

development of sequential state probability vectors for the aircraft departure system is 

presented next. Finally, the queue performance measures calculations are explained for 

each of the three models. In Chapter 6, the results are shown by demonstrating how the 

models perform for the LaGuardia airport data. Chapter 7 concludes with suggested 

applications and recommendations for future research. 
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2. Literature Review 

This chapter contains a summary of selected literature which is relevant to this 

thesis. The works are separated into three groups. The first group consists of articles 

which address aircraft delay analyses. The second provides a review of past efforts at 

general analytical modeling. The third group consists of articles which address other 

airport operational issues such as airport capacity estimation, and take-off time prediction. 

2.1 Aircraft Delay Analyses 

Herbert Galliher and R. Clyde Wheeler (1958) offer one of the earliest attempts at 

using numerical solution methods to help describe the transient operation of an airport 

landing queue. The application they provide assumes that the entry into the queuing 

system is a Poisson process, while the servicing (landing) process has a fixed length time 

between events. Their primary emphasis is on the transitory effect of time-variant aircraft 

arrivals to the airport and how they affect the resulting queue. They do not address the 

effect of various service process representations. 

Bernard O. Koopman (1972) performs an analysis of the effects of time-varying 

demand on the queue of airborne aircraft awaiting landing clearance. He points out that 

most previous efforts in the area addressed the problem as a stationary process. In his 

study, he uses two different types of service time representations. The first representation 

he uses is a service time of fixed length. The second is a service time that is exponentially 

distributed. 
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Koopman draws two main conclusions from his study. The first is that the results 

of the single waiting line queue are "highly sensitive to servicing rate," but are rather 

"insensitive to the statistical assumptions concerning the law of service." The second 

conclusion is that a double queue (one for take-offs and one for landings) can be 

analytically reduced to a fairly accurate single queue. (10:1105) 

Emily Roth (1979) performs a more detailed analysis of the time variant behavior 

of an airport queuing system. Roth's model is more advanced than Koopman's because 

she attempts to take into account variation in service time due to different spacing 

requirements for different combinations of aircraft. She also models the system with two 

queues, one for arrivals and one for departures. She argues that her "extended," two- 

queue model is a more accurate representation of the actual delay process. 

Roth uses her model to analyze the effect of three different priority schemes: 

landing priority, departure priority, and alternating priority. She points out, however, that 

one of the major limitations of her model is the time required to solve a typical problem. 

As an example, she points out that the execution of the extended model for 18 hours of 

data, and a maximum queue length of 13 aircraft, required 12.7 minutes of CPU time. 

(18:55) 

Robert C. Rue (1979) uses a Semi-Markov decision process to show the 

advantages of a using the social optimum to control aircraft arrival access to an airport. 

Without social optimum control, each individual customer decides to enter the queue 

based on maximizing his own gain. With social optimum control, the entrance decision is 

based on maximizing the benefit for all customers. Rewards and costs are assigned to 
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each individual aircraft that enters the queue. These quantitative measures are then used 

to determine the optimum priority policy for the various classes of aircraft. (19:2) 

2.2 Analytical Modeling 

Donald Gross and Douglass Miller (1984) present a method for achieving a 

transient solution to discrete state space, continuous time Markov processes. They assert 

that much of the analysis that has been performed on Markov processes has been limited 

to the analysis of the equilibrium condition. The authors point out that many processes 

require transitory analysis in order to properly represent the system. Such analysis may be 

called for when systems encounter time-varying system parameters which affect the 

system's performance. Transitory analysis may also be warranted if the system proceeds 

to equilibrium so slowly that steady-state analysis does not adequately describe the 

system's performance. (7:343-344) The modeling and solution technique the authors 

present is based on a solution method known as randomization. This method has been 

called uniformization by other authors (17:174-176). 

The solution methodology Gross and Miller offer generates a numerical solution to 

the set of differential equations which characterize a Markov process in transition. Their 

method requires the computation of many individual terms of an infinite series in order to 

achieve a reasonable approximation. These intermediate computations can require a large 

number of time consuming matrix multiplications. The authors address this problem by 

truncating the series when the probability value for a term is less than a predetermined 

tolerance level. 
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The authors point out that solution efficiency may be improved if several steps are 

taken. First of all, the problem may be simplified through the linearization of the state 

space. If the most accurate model of a system is multi-dimensional, it may be possible to 

simplify its solution by ordering the states "into a one-dimensional state space" (7:350). 

Solution efficiency may also be improved through the implementation of matrix 

multiplication algorithms which exploit the sparse nature of the matrices involved. 

J. Medhi (1991) describes a special class of stochastic models which are called 

queueing systems with vacations. In this type of queueing model, the server is periodically 

unavailable to service customers. Although the general concept of a server vacation (or 

absence) is of interest to this thesis effort, existing models are not useful for several 

reasons. First of all, the models assume that server vacations only occur when the queue 

is empty. Secondly, only the equilibrium condition of a modeled system is addressed. 

(12:399) 

2.3 Genera] Air Traffic Analyses 

Amedeo Odoni (1987) provides a general discussion of airport capacity estimation 

and aircraft delay optimization. One of his primary conclusions is that "optimization tends 

to favor large aircraft (biases) and long flights" (13:283). He further states that this 

systematic bias is one of the most commonly encountered problems with attempts to apply 

optimization to airport operations. Odoni also identifies some of the primary variables for 

airport capacity estimation. These include the weather, the operating runway 

configuration, ATC separation requirements and procedures, traffic mix, runway geometry 

and human factors. (13:274) 
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Robert Shumsky (1993) provides an initial analysis of take-off time data at Logan 

Airport, collected in March, 1991. This analysis is in support of research he is currently 

doing for the FAA to improve the agency's ability to predict of take-off times. His 

research effort addresses several of the causes for delays in take-off time. These include 

departure delays caused by late arrival to the airport from a previous flight and ground 

delays due to departure demand exceeding capacity. His discussion identifies some of the 

limitations with the prediction method now in use. In his report, he demonstrates the 

importance of runway configuration and capacity information to any type of meaningful 

analysis of the system. 

Eugene Gilbo (1993) provides an empirical method of estimating an airport's 

operating capacity. Gilbo's approach involves analyzing the observed number of 

departures and arrivals over a fixed time period. This method requires that the data be 

collected when the airport is operating at near peak capacity. Gilbo assumes this to be the 

case whenever the data indicates the existence of significant delays. (6:145) 

Gilbo explains that peak operating capacity may periodically surge beyond rates 

which are sustainable. Therefore, his estimates are determined after rejecting extreme 

outlier observations. He argues that doing so helps to improve the robustness of his 

technique. He then extends his analysis to show how the resulting capacity estimates may 

be used to improve the allocation of scheduled departure and arrival times and to better 

satisfy traffic demand.(6:153) 
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2.4 Summary 

The aircraft delay problem has received considerable attention over the last several 

decades.  Studies have been heavily focused on the overall air terminal delay situation and 

the determination of policies which will minimize delays. The efforts in this area have 

included simulations and analytical models to characterize and predict these delays. The 

literature considered in this review has been limited to those studies which analytically 

model the queue and the delay process. Most of the models presented employ Markov or 

Semi-Markov processes to accurately represent the air traffic situation. Although none of 

the literature reviewed focuses solely on the ground delay problem, the insights obtained 

on the nature of airborne delays may be directly applicable to a ground delay model 

representation. 

2-6 



3. Data Analysis 

3.1 Data Description 

The data used for this study comes from LaGuardia Airport (LGA). LaGuardia 

was chosen because it has a significant amount of traffic and periodically experiences 

delays in the departure queue. LaGuardia has two runways. During normal flying 

operations, one runway is designated as the departure runway and the other as the arrival 

runway. This feature helps reduce the complexity of the problem by allowing the use of a 

single server queue model. Although departures are generally given exclusive use of one 

runway, the runways intersect, hence the arrival process has some impact on the departure 

process and must be accounted for in the final model. 

The primary data used for this study was provided by the MITRE corporation. 

The data set uses inputs from the Aircraft Radio Incorporated (ARINC) Communications 

Addressing and Reporting System (ACARS) and the Airport Service Quality Performance 

system (ASQP). It includes 3885 records of arrival and departure data for the eight major 

airlines that flew into, or out of, LGA from 1 to 7 June, 1994. Each record includes 12 

fields of primary data and 27 fields of derived data. The primary fields are: airline, flight 

number, departure airport, arrival airport, date, Official Airline Guide (OAG) departure 

and arrival times, actual departure and arrival times, departure message time, arrival 

message time, and aircraft type. The derived fields represent values that are computed 

from the above primary data fields. The derived data fields include: wheels-off and 

wheels-on times, elapsed flight time, total delays, and specific delays for pushback, taxi- 
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out, and take-off. The primary data set is recorded in Greenwich Mean Time (GMT) 

minute format. This means that the time recorded for an event occurrence was the 

number of minutes that had elapsed since midnight in Greenwich England. 

In order to attempt to correlate departure delays to factors deemed important, 

copies of the daily airport records, hourly weather observations and airport operating 

configuration (primary departure and arrival runways) are included for the seven day 

period of the study. 

3.2 Initial Analysis 

Since the primary focus of this study was the departure process and the resultant 

departure delays, most of the analysis is performed using the 233 to 294 daily departure 

records. Due to recording problems on 1 and 2 June, much of the data from those days is 

missing. However, sufficient data is available on the remaining days to create useful 

models and generate insightful conclusions. The most interesting two days in this data set 

are 6 and 7 June. These are the only days that experience any significant weather 

phenomena and they are also the days that experienced the most significant delays. 

The first analysis performed is to study the plot of actual delays experienced versus 

the time of day. The data manipulation and plots are accomplished using Microsoft Excel. 

The data file is first separated into arrival and departure data. Next, the departure data is 

separated by day of the week. Finally, the actual roll-out times are plotted against the time 

of the day that each flight actually left their gate (pushback time). 

Since all of the time of day data are recorded in GMT, these times are converted to 

local hour/decimal hour format to facilitate analysis. The conversion factor to convert 

3-2 



GMT to local time for LGA in June is 4 hours (3:B-282). Therefore, local time is 

computed by subtracting 240 minutes from the recorded GMT time to obtain a local time 

in minute format. This number is then divided by 60 to generate the decimal hour result 

In order to produce the plots described above, the roll-out times had to be 

computed since the data set does not include this data field. The data set does, however, 

include a taxi-out delay data field which is computed as the difference between the actual 

gate departure time and the actual wheels-off time minus a nominal 15 minute taxi-out 

time. The wheels-off time, which is itself a derived data field, is computed by subtracting 

the departure gap time from the departure message time. The departure message is 

generated when the ground controller first identifies the airborne aircraft on radar. 

Although the data set includes a taxi-out delay data field, the actual roll-out times are 

plotted in order to avoid the need to plot negative taxi delay values. The plot for Monday, 

6 June 94 is shown in Figure 3.1. Plots for all seven days may be found in Appendix 1. 
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Figure 3.1 Roll-Out Times -- 6 June 

3-3 



Due to problems with the data collection process and the merging of the two data 

sets mentioned, some of the records are missing the necessary fields to compute the roll- 

out time. These records are included in the plot to show where the missing data exists to 

provide better understanding of the data. These records are plotted as zero roll-out times. 

If a record's actual gate departure time is missing, these records are plotted at the OAG 

scheduled gate departure time. 

The plots of actual roll-out times demonstrate that significant nonrandom delays 

occur on several days during certain times of the day. The most significant delays occur 

on Monday, 6 June, while the least significant delays occur on Saturday and Sunday, 4 and 

5 June. The plots of data indicate the existence of peak periods in the departure process. 

Since 6 June has the most significant taxi delay pattern, it is the data set used to initially 

develop the model. 

It is important to note the existence of missing data. The occurrence of missing 

records in the data for 6 June, represented by the zero roll-out times, shows the number is 

not great. Out of a total of 287 departure records for this day, 26 are missing, or 9 

percent For the seven days of data available, the amount of missing data varies from 3 

percent on Saturday, 4 June, to 55 percent on Wednesday, 1 June. As mentioned 

previously, most of the missing data occurs at the beginning of recording period due to 

initial problems with the data collection process. 

3.3 Demand Process. 

The next aspect of the data to be analyzed is the demand for service process. 

Since the actual times that departing aircraft demand service are not recorded, the 
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pushback (gate departure) times are analyzed instead. The number of pushbacks per hour 

on 6 June is plotted. These plots show the existence of peak periods from 6:00 to 10:00 

AM and again from 3:00 to 7:00 PM. When the time between these events are plotted, 

the data visually supports an exponential distribution fit. A plot of the times between 

pushbacks for the 6 June AM peak period demonstrates this observation. 

Probability/    Exp(gap 
Fraction 
Observed 

Obs(gap 

Time between gate departures 

Figure 3.2 Time Between Pushbacks (Gate Departures) - 6 June, 06:30 -10:00 

If the time between pushbacks is exponential, then this process is Poisson.   Since 

the number of pushbacks per hour varies by the time of day, this process must be 

described as a non-homogeneous process. 

The distribution of the time between pushbacks is analyzed in one hour blocks. 

The chi-square and the Kolmogorov-Smirnov (KS) goodness-of-fit tests are performed to 

see whether the data fails to "fit" the exponential distribution. Using a 5 percent 

confidence level, the chi-square goodness-of-fit test fails to reject the hypothesis that the 

data fits the exponential distribution for all of the hours between 6:00 AM and 8:00 PM on 
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6 June and the peak periods from 6 and 7 June. The KS test also fails to reject the same 

hypothesis for all of the hourly observations from 6 June. Therefore, the pushback process 

can be reasonably represented as a non-homogeneous Poisson process. The chi-square and 

KS goodness-of-fit test results are provided in Appendix 2. The summary of the KS 

goodness-of-fit test results are shown in the table below. 

Kolmogorov-Smimov goodness-of-fit test results 
time between gate departures (pushbacks) 

versus the exponetial distribution 
Hourly Data from 6 June 

Hour of the day KS Degrees of Confidence Level 
Statistic Freedom (p - value) 

6:00 to 7:00 0.208 24 greater than 0.1 
7:00 to 8:00 0.206 22 greater than 0.1 
8:00 to 9:00 0.229 21 greater than 0.1 
9:00 to 10:00 0.201 22 greater than 0.1 

10:00 to 11:00 0.345 14 greater than 0.05 
11:00 to 12:00 0.206 17 greater than 0.1 
12:00 to 13:00 0.181 14 greater than 0.1 
13:00 to 14:00 0.156 17 greater than 0.1 
14:00 to 15:00 0.267 15 great er than 0.1 
15:00 to 16:00 0.189 18 great er than 0.1 
16:00 to 17:00 0.229 16 greater than 0.1 
17:00 to 18:00 0.139 18 greater than 0.1 
18:00 to 19:00 0.229 22 greater than 0.1 
19:00 to 20:00 0.133 12 greater than 0.1 

Table 3.1 KS Goodness-of-Fit Test Results, Time Between Pushbacks 

Now that it is concluded that the pushback process can be represented as a non- 

homogeneous Poisson process, it is necessary to relate this process to the actual demand 

process or the entry process to the departure queue itself. If it can be assumed that the 

vast majority of departure delays occur at LGA due to delays in obtaining clearance to take 

off, then most delays encountered from the gate to the end of the runway should be minor 

in comparison. Therefore, it is assumed that the taxi-out process from the gate to the 
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departure queue can be modeled as a multi-server queue that can handle as many aircraft 

as attempt to taxi out. If this is the case, then the taxi-out process would resemble an 

infinite server system. This, along with the earlier assumption that the pushback process is 

a Poisson process, allows the conclusion that the output process from this system is also a 

non-homogeneous Poisson process regardless of the distribution of the service time (taxi- 

out time). Finally, since the output of the taxi process is the input to the departure queue, 

it can be concluded that the entry process to the departure queue also follows a Poisson 

process. This, along with the previous assumption of a single server system for the 

departure process, are the key assumptions for the analytical modeling that follows. 

In order to obtain an estimate for the taxi time, it is assumed that a queue did not 

exist when the roll-out times appeared to be stable and when the vast majority of these 

times were 20 minutes or less. The taxi times from 10:30 AM to 2:30 PM on 6 June meet 

these conditions. When these times were plotted, taxi-out time appears to be normally 

distributed with a mean of 13 minutes. Although this is not a very rigorous estimate, it 

should be sufficient for the purposes of this study. 

3.4 Service Process. 

The next aspect of the data to be analyzed, and the hardest one to characterize, is 

the actual service process (rate at which take-offs occur). This rate is the key to the 

accurate modeling of the departure process. It is also an area that has received a great 

deal of study in the past. An airport's capacity is a much sought after piece of 

information. The estimated capacity is a function of the operating runway configuration 

and the weather. For example, LaGuardia's best runway configuration is to conduct 
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arrivals on runway 22 and departures on runway 13. When the weather allows Visual 

Right Rules (VFR), LaGuardia can handle 32 to 36 arrivals per hour, or roughly one 

every 1:42 minutes. When LaGuardia is conducting arrivals on runway 13 via the 

Instrument Landing system (ILS) and departures on runway 13, the arrival rate capability 

is only 18 to 22 per hour. The rate of aircraft departures is usually comparable to the rate 

of arrivals. (4:1-2) 

The problem with estimating the departure process from the take-off times in the 

data set is the fact that the time between take-offs is not the "service time" in the queuing 

model. There are several reasons for this. The first is the fact that there may be times 

during the day when the queue empties out and there are no aircraft waiting to take off. 

In this case, the time between take-offs includes some idle time for the runway (as far as 

the departure process is concerned). The second problem with estimating the service time 

is the fact that there are several outside influences which can increase the time between 

aircraft departures. For LaGuardia this includes safe clearance requirements for the 

aircraft landing on the intersecting runway and in-flight safe separation requirements for 

aircraft flying into, and out of, airports in the New York Terminal Control Area (TCA). 

These airports include JFK and Newark International Airports. One final factor to be 

mentioned here is that the data set does not include the same level of detail for General 

Aviation Aircraft (GAA), although these aircraft are part of the same departure queue 

being studied. The representations of service time used in this study attempts to account 

for these factors. 
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The time between takeoffs is analyzed for the peak periods of 6 and 7 June. Since 

all aircraft taking off during these times experience roll-out times greater than average, it 

is assumed that the runway was never idle due to a lack of aircraft ready to take off. In 

other words, it is assumed that there was always a queue present during these peak 

periods. A histogram is generated for the time between take-offs for these peak periods 

and visually compared to exponential and Erlang-k distributions. The Erlang-k 

distribution represents the sum of k independent, identically distributed exponential 

random variables, where k is an integer. The graphs for the AM and PM peak periods for 

6 and 7 June are provided in Appendix 1. Figure 3.3 below shows the data for the AM 

peak period on 6 June. 
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Figure 3.3 Time Between Take-offs - 6 June, 06:30 -10:00 

The El, E2 and E3 graphs represent the exponential, Erlang-2 and Erlang-3 

distributions respectively. All three are computed with a mean equal to the mean of the 
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empirical data. The histogram represents the fraction of observed take-off gaps that were 

"i" minutes apart. 

These graphs indicate that the data may fit either an Erlang-k or exponential 

distribution, with the Erlang distributions appearing to achieve the better fit. When the 

first two moments of the distributions are matched to the first two moments of the 

observed data, the Erlang-2 distribution fits the closest. However, when the chi-square 

and KS goodness-of-fit tests are performed, neither the Erlang-2 nor the exponential 

distribution are rejected. The goodness-of-fit test results are provided in Appendix 2. 

Since the KS goodness-of-fit test is more powerful than the chi-square test, the summary 

of the KS test results are listed in Table 3.2. 

Kolmogorov-Smirnov goodness-of-fit test results 
time between take-offs 

peak periods on 6 and 7 June 

Date Time of Peak KS test Degrees Confidence Level 
Statistic of Freedom (D - value) 

6-Jun 6:30   to    9:00 0.103 58 greater than 0.1 
6-Jun 15:00 to   18:00 0.088 51 greater than 0.1 
7-Jun 6:30   to    9:00 0.139 63 greater than 0.1 
7-Jun 16:00 to   18:00 0.086 35 areaterthan 0.1 

Table 3.2 KS Goodness-of-Fit Test Results, Time Between Take-offs 

Intuitively, these distributions make some sense. If the airport departure capacity 

were 40 per hour, we could expect that departing aircraft could take off once every 1:40. 

However, the data indicates that the time between takeoffs is often greater than this and 

sometimes it is a good deal more. Whether they are due to GAA departures, arriving 

aircraft, or other outside influences, the resultant delays appear to follow one of these 
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distributions. Therefore, it is assumed that these random gaps may be adequately modeled 

with the exponential and/or the Erlang distributions. 

It is possible that a better representation for the service time distribution may be 

obtained as the probabilistic mixture of two separate conditional distributions. The first 

conditional distribution would represent the time between take-offs given there were no 

outside delay factors (e.g. GAA departures, arrivals, etc.) In this case, the distribution 

represents the time between take-offs that could be attributed solely to departure aircraft 

spacing requirements. The second conditional distribution represents the time between 

take-offs, given that there is a random occurrence of one of the outside influences 

mentioned previously, such as landing aircraft or GAA departures. Li this case, the time 

includes the amount of time that the server (the runway) is not available for take-offs for 

the aircraft in the queue, plus the amount of time for the aircraft to take-off once the 

server became available again. The random additional delays will be called server 

absences, because the server (runway) can be considered not available for the aircraft in 

the queue. 

One of the significant features of the graph in Figure 3.3 is the fact that there is an 

accumulation of probability mass in the tail of the graph that is not characteristic of the 

exponential nor the Erlang distribution. Li order to use the absence model described 

above to model this observation period, those times of three minutes or less are assumed 

to be service times occurring under the first condition (no server absence occurred). 

Those times that are greater than three minutes are assumed to be service times under the 

second condition (a server absence occurred). In the first case, matching the first two 
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moments yields an Erlang-6 distribution. Figure 3.4 demonstrates the fit of this 

distribution to the service times that were three minutes or less. 
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Figure 3.4 Time Between Take-offs (< 4 Minutes) 

The next challenge is to fit the distribution for the service time, given an absence 

occurs. In this case, the distribution will be the convolution of the absence time and the 

service time once the absence is over.  In order to estimate the distribution parameters for 

the absence time, a nominal two minutes of service time is subtracted from those times 

between take-off that were greater than three minutes. The Erlang-9 distribution is chosen 

by matching the first two moments of this distribution to the data. 
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Figure 3.5 Absence Durations 

The final distribution for the service time is the probabilistic mixture of the basic 

service time and the convolution of the basic service time and the absence time. Due to 
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the complexity of the analytical representation for the convolution of an Erlang-6 and an 

Erlang-9 distribution, Monte Carlo simulation is used to demonstrate the fit of the 

theoretical distribution to the data. This simulation is performed using 500 observations. 

Probability/ 
Fraction 
Observed 

Time Between Take-offs (minutes) 

Figure 3.6 Service Time Representation -- Monte Carlo Results 

This graph indicates that this form of a service time distribution might have merit 

3.5 Absence Occurrences 

The final data analysis performed at this level is to determine if the absence 

occurrence process could also be modeled as Poisson. As was assumed previously, an 

absence is considered to have occurred when the time between take-offs is greater than 3 

minutes during a peak period. The resulting times are tested for fit with the exponential 

distribution using the KS goodness-of-fit test. None of the data for four peak periods are 

rejected for this fit. The four periods are the AM and PM peak periods on 6 and 7 June. 

The KS goodness-of-fit test results are in Appendix 2. The summary of the test results is 

shown in Table 3.3. 
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Kolmogorov-Smirnovgoodness-of-fit test results 
time between absence occurances 
peak periods on 6 and 7 June 

Date Time of Peak KS test Degrees Confidence Level 
Statistic of Freedom (D - value) 

6-Jun 6:30   to    9:00 0.241 13 greater than 0.1 
6-Jun 15:00 to   18:00 0.102 13 greater than 0.1 
7-Jun 6:30   to    9:00 0.225 15 greater than 0.1 
7-Jun 16:00 to   18:00 0.16 15 areater than 0.1 

Table 3.3 KS Goodness-of-Fit Test Results, Time Between Absences 

As a result of these tests, the absence occurrence process is assumed to be adequately 

represented by a non-homogenous Poisson process. 

3.6 Summary 

In order to determine the feasibility of analytically modeling the departure process 

of the LaGuardia departure queue, the available data set had to be analyzed in detail. The 

first analysis accomplished was to determine the hourly pattern of departure delays. This 

was accomplished with a scatter plot of the roll-out times versus the hour of the day that 

each flight accomplished pushback. These plots clearly demonstrated the existence of 

peak periods for delays. In addition, they demonstrated that the delay process varied 

significantly from one day to the next. When the delay patterns did occur, they coincided 

with the peak periods for aircraft pushbacks. 

The next data analysis performed was to determine an appropriate probability 

distribution for the pushback process. It was determined that this process closely 

resembles a non-homogeneous Poisson process.  Both the chi-square and the KS 

goodness-of-fit tests were performed and both failed to reject the exponential distribution 

for the time between pushbacks in each hourly time interval. This process was then 

3-14 



related to the entry process for the departure queue with the conclusion that this process 

could also be considered a non-homogeneous Poisson process. 

The time between aircraft departures during peak periods was used to estimate the 

service time for a departure queue. It was assumed that a queue was always present 

whenever the mean roll-out time for a period was greater than 15 minutes. Three different 

models were used to characterize these times. The first model assumed an exponential 

distribution for these times. The second model assumed an Erlang-2 distribution for 

service times. Neither the exponential nor the Erlang-2 distribution were rejected by the 

chi-square and the KS goodness-of-fit tests. 

The third model for the service time distribution assumed that the times were 

actually the mixture of a service time and a server absence time. The distribution was 

estimated using an Erlang-6 distribution for the service time and an Erlang-9 distribution 

for the absence time. The total distribution was estimated using Monte Carlo simulation 

and visually verified as a possible fit for the data. In addition, the time between server 

absences was tested for exponential fit using the KS goodness-of-fit test. The fit of the 

absence process to a Poisson process was not rejected by this test. 

Since it has been determined that the entry process to the departure queue 

adequately fits a Poisson process, and the service process can be adequately represented 

by exponential, Erlang, or some combination of Erlang distributions, it is now possible to 

develop models to describe the departure process using a Markovian state space. Chapter 

4 will describe how these models are defined. 
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4. Markovian Modeling 

4.1 General 

One of the primary advantages of a Markovian model is that its transitory state 

probabilities may be readily estimated. A key feature of the LGA aircraft departure 

process is its obviously transitory nature. The rate at which aircraft arrive at the end of 

the runway to take off varies significantly with the time of day. In fact, it has become 

readily apparent that this variable rate, and the airport's occasional inability to respond to 

the resultant variable demand, is responsible for the most significant departure delays. The 

primary focus of this study is, therefore, to describe and predict how this system behaves 

over time. 

Since it is possible to estimate the probability of being in any particular state at a 

given point in time for a Markov process, it may be worthwhile to develop a Markovian 

model for the aircraft departure system. Once the state probabilities have been estimated, 

it is then possible to determine queue performance measures of interest, such as the 

expected number of aircraft in the queue and the expected waiting time for a new entry to 

the queue. Due to the solvability of Markovian models, all of the models developed in this 

study will have their state spaces defined so that the model is Markovian. 

4.2 The Markovian Property 

A Markov chain is defined to be a stochastic process for which the conditional 

probability of transitioning to some future state, given the present state and all previous 

states, is dependent only on the present state and is independent of the previous states 
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(16:137). For a continuous time process, this Markovian property applies not only to the 

conditional probability of transitioning to some future state, but also to the time until the 

next state transition. The time until the next state transition depends only on the present 

state of the system and does not depend on how much time the system has been in this 

state (16:256). These two features of a Markovian model are sometimes described as the 

memoryless property. A particularly important Markov process is the Poisson process. A 

Poisson process is a counting process for which the time between events is exponentially 

distributed (16:211). 

Like the Poisson process, the time between state transitions for any Markov 

process must be exponentially distributed. This is required because the exponential 

distribution is the only continuous distribution which is memoryless. If the amount of time 

between events is exponentially distributed, then the amount of time for the next event to 

occur does not depend on how long it has been since the last event has occurred. In this 

sense, a memoryless process has no "memory" of anything that has taken place before, 

such as how long it has been since the last event (16:201). 

4.3 Modeling Considerations 

For each of the models, the state spaces are defined so that the transition times 

between states can be modeled with an exponential distribution. This will allow the 

modeling of the process as a Markov chain which is important to maintaining the 

tractability of this problem. In order to comply with this requirement, the models 

developed will apply to periods of time for which the exponential distribution appears to 

be reasonable. For most of the analysis performed in this study, this time period will be 
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one hour. The models will be used to solve for the transitory solutions to the state 

probabilities at the end of each of the time periods to develop a transitory estimate for the 

non-homogeneous process. The M(t) designation for the entry process in the queue 

model titles is used to show that the system entry process is Markovian and has a mean 

arrival rate that varies with time (i.e. non-homogeneous). 

LaGuardia has two intersecting runways. The normal operating configuration 

uses one runway as the primary departure runway and the other as the primary arrival 

runway. As a result, the models for the aircraft departure process used in this study are all 

based on a single server system and a single queue. The fact that the runways intersect 

means that the aircraft arrival process can have an impact on the aircraft departure 

process. Li addition, other factors (GAA departures, traffic from other nearby airports, 

etc.) will also influence the departure process. Each of the models developed will attempt 

to account for these factors in one way or another. 

The data analysis in Chapter 3 supports the modeling of the aircraft departure 

process with a Markovian model. Although the number of aircraft that entered the 

departure queue varied with the hour of the day, when the data was analyzed in short 

blocks of time, the time between aircraft entries to the queue demonstrated resemblance to 

the exponential distribution. The analysis further showed that the service process might be 

reasonably modeled by the exponential distribution. However, it was determined that the 

service process may be better represented by the Erlang distribution. This turns out to be 

only a minor hindrance to modeling the system as a Markovian process. Since an Erlang 

random variable can be represented as a sum of an integer number of independent and 
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identically distributed exponential random variables, it is sometimes possible to create a 

Markovian model when the service time distribution follows an Erlang distribution. This 

is accomplished using the "method of stages" to specify the state space of the model 

(9:119). This method will be demonstrated in two of the models developed for this study. 

The models developed use several variations to characterize the distribution of the 

service time. The first assumes an exponentially distributed service time. This results in a 

queue with a non-homogeneous Markovian entry process, a Markovian service process, 

and a single server (M(t)/M/1). The second model assumes an Erlang-k distribution for 

the service time, which results in an M(t)/Ek/1 queue, where k is the number of stages of 

service. The final model adds one additional refinement to the M(t)/Ek/1 queue model by 

explicitly modeling the times when the server (the runway) is unavailable to service 

departing aircraft due to outside factors. The period of time when a server is non- 

available will be called an absence in order to avoid confusion with previous works which 

calls a similar phenomenon a server vacation. 

4.4 Modeling Assumptions 

The two key assumptions/conclusions upon which the models of this study are 

based are: 

1. Since LGA typically uses one runway at a time for departures, the departure 
process can be modeled as a single server queue. 

2. The entry process to the departure queue is a non-homogeneous Poisson 
process. 
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These assumptions are critical because, without them, it would be extremely 

difficult to model the system of interest as a Markov process. Given the assumptions 

above, the final factor to be decided is how to most accurately represent the distribution 

for the service time. 

4.5 M(t)/M/1 Model 

This model assumes that the service time distribution is exponentially distributed. 

Given this assumption, the aircraft departure process can be represented as a Markovian 

birth and death process where the state of the system is equal to the number of aircraft in 

the system. The birth rate is determined by the rate at which the aircraft show up at the 

end of the runway. This process is assumed to be a non-homogeneous Poisson process. 

The death rate is determined by the average maximum rate at which take-offs occur for 

the aircraft represented in the system. Since the data set under analysis only includes the 

eight major airlines, this death rate, or service rate, is only a fraction of LGA's actual 

departure capacity. This rate should be a function of such factors as the number of GAA 

take-offs, the number of aircraft landings at the airport, the weather and the congestion of 

the TCA. 

H \i [i \i \i 

Figure 4.1 M(t)/M/1 Queue Model State Diagram 
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The state diagram for this model shows that the system description is fairly simple 

and intuitive. The state of the system corresponds directly to the number of aircraft in the 

system. The system entry rate is represented by X(t), which stands for the rate of the 

Poisson arrival process for time period t. The system service rate is represented by \x, 

which stands for the maximum average rate at which aircraft are allowed to take off. 

Both of the required model parameters can be reasonably estimated. The entry 

rate can be easily estimated by the number of pushbacks (gate departures) scheduled or 

observed per time period. The service rate is more difficult to estimate. The rate used in 

this study is the average maximum rate observed for a peak operating period. 

4.6 M(t)/Ek/1 Model 

This model assumes that the service time distribution follows an Erlang 

distribution. As was seen in Chapter 3, the Erlang distribution appears superior to the 

exponential distribution for fitting the service time data. When the first two moments of 

the empirical data for service times during the AM peak period on 6 June is matched with 

the theoretical distributions, the Erlang-2 distribution achieves the closest match. 

The use of the Erlang-k distribution for the service time greatly increases the 

flexibility of the model. By varying the value of the parameter k, it is possible to vary the 

shape of the distribution. In this way, it may be possible to achieve a more accurate 

representation of the service time. The method of stages uses this Erlang-k representation 

for the service time distribution to model a system for which the service rate is not 

exponentially distributed and yet still maintains the advantages of a Markovian model. 
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However, the state space definition for this type of model is less intuitive than the 

M(t)/M/1 model. The state of the system does not represent the number of aircraft in the 

system but rather the number of stages of service in the system. 

When using the method of stages to describe the service time, each new aircraft 

which enters the system can be thought of as bringing k stages of service with him. Thus 

an entry increases the state of the system by k states, since it will require the completion of 

k additional stages of service in order to complete service on all aircraft in the system at 

that time. The state of the system is thus equal to the total number of stages of service 

that need to be performed in order to complete service on all the customers who are in the 

system. Each aircraft in the queue will account for k states, while the aircraft "in service" 

will account for the number of stages of service it has yet to complete. When an aircraft 

completes one of its stages of service, the state of the system decreases by one. However, 

the number of aircraft in the system does not decrease until the aircraft in service has 

completed all k of its stages of service. 

The diagram below depicts the state space for such a system where a service has 

two stages (i.e. k = 2). The decreasing state transition rates in the diagram are shown as 

2\i. However, in general each rate will be equal to k^i. 

MQ Mt) Mt) MO      Mt) 

2n 2p. 2\i 2\i 2\i 

Figure 4.2 M(t)/E2/1 Queue Model State Diagram 
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Using the method of stages to represent the service time improves the accuracy of 

the model by allowing a better probability distribution fit for the service times observed. 

Also, by defining the state of the system as the number of stages of service in the system, 

the transitions between states remain exponentially distributed and thus the model remains 

Markovian. Although the model is no longer a birth and death process model, the fact 

that it is still Markovian greatly simplifies the estimation of the state probabilities. 

The estimation of model parameters is almost as straight forward as it was for the 

M(t)/M/1 model. The entry rates are determined in exactly the same fashion. The service 

rate \i is also determined in the same fashion as the previous model. However, the 

transition rate for the completion of a stage of service is equal to k\i. Since k stages must 

be completed to finish service on one aircraft, the rate at which k stages of service are 

completed (when each stage has rate kp,) is \i. 

4.7 M(t)/Ek/1 Model with Random Server Absences 

This model adds one additional refinement to the model just developed. In this 

model, the server (runway) is periodically unavailable to service the departure aircraft. 

The server absence can be caused by GAA departures, conflicts with arriving aircraft, or 

conflicts with other aircraft in the TCA. The previous two models accounted for these 

factors by using the exponential and the Erlang-k distributions to model the service time. 

These two distributions have a significant amount of probability mass in their tail, which 

provides a reasonable representation for the longer than normal "service" times that are 

sometimes observed. The server absence model can be more intuitively appealing due to 
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its explicit modeling of the variations in the service time. In this model, the basic service 

time is still modeled as Erlang-k. However, since the longer than normal service times are 

represented by server absences, the basic service time has a smaller mean and variance 

than did the service time distribution from the M(t)/Ek/1 model. This requires the use of 

an Erlang distribution with a larger parameter k and a smaller mean. The probability of 

server absences and the rate that the server returns from these absences is used to account 

for the largest variations in the service times. This model enables the probability of a 

server absence to be independent of the service rate. The distribution for the amount of 

time the server is absent is modeled with the Erlang distribution. States are included in the 

model to represent the stages of the server's return from his absence. 

The diagram in Figure 4.3 depicts the state space with two stages of service and 

two stages of absence return.. 

Mt) Ä,(t) MO X(t) 
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P)2H 

Figure 4.3 M(t)/E2/1 Queue Model With Server Absences State Diagram 

In this diagram, the decreasing state transition rates representing absence 

completions are shown as 2a. The last stage of service completion for each aircraft is a 
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split Poisson process. The rate when a server absence occurs is equal to p2p., while the 

rate where no server absence occurs is  (l-p)2jx. The parameter p is the probability that a 

server absence occurs after a service completion 

There are several disadvantages with this latest model. First of all, the increase in 

the state space can drastically increase the complexity of the problem and thus the amount 

of computer time required to solve the problem. The second is that the increase in the 

complexity of the problem requires the accurate estimation of two parameters that may be 

hard to determine, the probability of a server absence and the absence completion rate. 

The primary advantage of this model is its explicit modeling of a primary cause of 

extended departure delays. Even with its limitations, this model generates some 

interesting results. 

4.8 Summary 

In this chapter, three models were developed to represent the aircraft departure 

queue. The first model represents the aircraft departure queuing process as a birth and 

death process. This model assumes that both the queue entry and the service processes 

are Markovian. This was shown in Chapter 3 to be a reasonable assumption. The second 

model retained the requirement that the queue entry process be Markovian. However, the 

service process was generalized in an attempt to more accurately model the service time. 

In this model the service time was modeled with the Erlang-k distribution, and the state 

space was expanded to include k stages of exponentially distributed service. The third 

model expands on the previous two models by explicitly modeling the periodic increases in 

the service time with a separate process called a server absence. The probability of a 
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server absence is assumed to be independent of the service process. Also, the time of each 

absence is modeled with the Erlang distribution. The state spaces for each model have 

been carefully designed to preserve the Markovian property of the model. This property 

will be exploited in the next chapter in order to estimate the system's transitory state 

probabilities and queue performance measures. 
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5. Solution Methodology 

5.1 Overview 

Now that accurate Markovian models have been created, it is possible to estimate 

the transitory solution for the aircraft departure queuing system. In order to compute this 

solution, an appropriate time period must be established for which the model parameters 

appear homogeneous. Most of the analysis in this study uses a time period of one hour. 

Once this time period is established, model parameters are estimated and the rate matrix is 

developed for each time period. The rate matrix is used to obtain an approximate solution 

to the transition matrix. The transition matrix is then used to generate the state 

probabilities for the end of the time period. The state probability vectors are computed 

recursively, with the state probability vector for the end of each time period used as the 

initial condition for the subsequent time period. Finally, these state probabilities are used 

to generate the desired system performance measures such as the mean and the standard 

deviation of the number of aircraft in the queue and the expected waiting time in the 

queue. 

The models developed in Chapter 4 are all based on an infinite queue length. 

However, in order to obtain an approximate solution, each of the models is truncated to a 

finite dimension. This is justified because the probability that the system is in high states is 

small enough that truncation does not significantly affect the results. One of the key 

considerations is determination of an appropriate truncation point 

5-1 



5.2 Transition Matrix 

In order to determine the state probabilities for the end of each time period, it is 

necessary to determine the transition probabilities for each possible state transition. This 

is accomplished by solving a series of first order differential equations that represent the 

rate at which transition probabilities change with respect to time. The number of these 

equations which need to be solved is equal to the number of state transitions in the system. 

The Kolmogorov backward equations exemplify one way to set up these equations 

(16:267). 

The transition matrix is the matrix solution of this system of differential equations. 

This solution represents the transition probabilities for the end of the selected time period. 

If the subscript i represents the state of the system at the start of the time period and j 

represents the state at the end of the time period, then the transition matrix element Py is 

the conditional probability of being in state j at the end of the time period, given that the 

system started in i. Once these probabilities have been determined, the resulting matrix is 

multiplied with the vector of estimated state probabilities for the beginning of the time 

period to determine the vector of estimated state probabilities for the end of the time 

period. 

The first step in obtaining the solution of these equations is to truncate the number 

of states in the model to a reasonable level. For this study, a maximum system size is 

considered reasonable if it is 2 to 2.5 times the magnitude of the highest average queue 

length generated in the output When this system size was employed, the state probability 

for the highest state was always observed to be less than 0.01, and typically it was much 
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smaller. The second step is to determine the proper rate matrix. This rate matrix is then 

used in the approximation methods presented by Sheldon Ross to achieve an estimate for 

the transition matrix (16:291). Both of these approximation methods will be described 

below. Justification for both approximation methods is provided in Appendix 3. 

5.2.1 Rate Matrix 

The rate matrix is made up of the transition rates for the model to be solved. If the 

matrix is called R, then the elements Ry (i*j) are equal to the transition rates from state i to 

state j, and the diagonal elements, RH, are equal to the negative of the total rate at which 

transitions occur out of state i. 

5.2.2 Approximation Method One 

The first approximation uses the following identity. 

P(t)«   Um    [i-j-R--] 
n-»~\        n/ (5-1) 

In order to avoid problems with computer errors, n must be chosen large enough 

so that all of the matrix elements are non-negative prior to performing matrix 

multiplication.  Also, because the approximation only requires the single result of a high 

order matrix multiplication, this approximation avoids the need to accomplish the many 

intermediate matrix multiplications. Where other computation methods require n matrix 

multiplication for each value of n used in the summation, the approximation formula (5-1) 

allows the repeated multiplication of the matrix product with itself. Thus when n = 2 , the 

n* power of the matrix may be obtained with only k matrix multiplications. 
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5.2.3 Approximation Method Two 

The second approximation method uses equation (5-2). This equation is a good 

approximation for the matrix solution, P(t), when n is large. 

(5-2) 

This approximation avoids problems with computer round off error because the 

matrix (I - Rt/n)"1 has only non-negative elements. In addition, this approximation may 

utilize the same matrix multiplication technique as the first approximation, since only the 

final matrix product is needed. 

The implementation of the two approximations and the computation of the queue 

performance measures will be demonstrated with their application to the three models of 

this study. 

5.3 M(t)/M/1 Queue Model Solution 

For a birth and death process, the transition rates between states are equal to the 

rates at which entities enter and depart the system. The rates in this model are determined 

by the rates at which aircraft demand service and the rate at which they are allowed to 

take off. The rate matrix for this process turns out to be tri-diagonal. 

5.3.1 M(t)/M/1 Model Rate Matrix 

As an example, a rate matrix is shown in Figure 5.1 for a system which has aircraft 

entering the system (and demanding service) at a rate of 15 per hour and a service rate of 

20 take-offs per hour. The elements (i,i+l) represent the rate at which the state of the 

system (the number of aircraft in the system) increases, which is equal to the demand for 
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service rate, 15. The elements (i,i-l) represent the rate at which the state of the system 

decreases, which is equal to the service rate, 20. Finally, the negative elements on the 

diagonal (i,i) represent the total rate at which the system transitions out each individual 

state. Hence, the elements in each row must sum to zero.  The matrix, R, below 

represents a system which is limited to 9 aircraft 

-15 15 0 0 0 0 0 0 0 0 

20 -35  15 0 0 0 0 0 0 0 

0 20 -35   15 0 0 0 0 0 0 

0 0 20 -35 15 0 0 0 0 0 

0 0 0 20 -35 15 0 0 0 0 

0 0 0 0 20 -35  15 0 0 0 

0 0 0 0 0 20 -35   15 0 0 

0 0 0 0 0 0 20 -35 15 0 

0 0 0 0 0 0 0 20 -35 15 

. 0 0 0 0 0 0 0 0 20 -20 

Figure 5.1 Rate Matrix -- M(t)/M/1 Queue Model 

The boundary conditions require special consideration. The process obviously 

cannot transition to a lower state when the state is 0, so element (0,0) is -15. Also, since 

the truncation point in this example is 9 aircraft, aircraft arrivals are not allowed when 

there are 9 aircraft already in the system. Thus, element (9,9) is -20. 

5.3.2 M(t)/M/1 Model State Probabilities 

Now that the rate matrix has been determined, the length of the time period, t, and 

the value of n must be established. For the above example, if t equals 1 hour, n must be 

greater than 35 in order to avoid negative elements in the matrix (I+Rt/n) used in the first 

approximation method. In this case, the lowest acceptable value of k is 6, which yields an 
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n of 64. Although the second approximation method does not have the same problems 

with negative elements, n must still be large in order to obtain an accurate approximation. 

Once the transition matrix has been approximated, it is multiplied with the state 

probability vector for the system condition at the beginning of the time period to obtain 

the approximation for the state probability vector at the end of the time period. At 

LaGuardia, the airport is closed from midnight until 6:00 AM. Therefore the initial 

condition state probability vector has a state 0 probability equal to 1.0 and all other state 

probabilities equal to 0.0. In general, however, any initial system state may be used. For 

example, if the model were to be run with an initial state of 2 aircraft in the system, then 

its initial state vector would have the probability 1.0 in state 2 and probability 0.0 

elsewhere. 

5.3.3 M(t)/M/1 Model Queue Performance Results. 

The queue performance measures are determined once the state probabilities have 

been estimated. The expected queue length is found by summing of the products of each 

state probability and the queue length associated with that state. When the system is in 

state i, there are i aircraft in the system, and (i-1) aircraft in the queue. Equation (5-3) 

below demonstrates how the expected queue length may be determined. 

max 

Nq« 2   (i- D-Ptij 

i=l (5-3) 

Nq represents the expected number of aircraft in the queue. Pn, represents the 

estimated probability of being in state i. The variable "max" represents the maximum 

system size as determined by the chosen truncation point. 
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The variance of the number of aircraft in the queue is estimated by calculating the 

expected value of (i-1)2 and then subtracting (Nq)2 from it 

max 
s2 Vq= ^   (i- 1)2-Pn. - (Nq)2 

i-1 (5-4) 

The next queue performance measure computed is the expected waiting time for 

an aircraft which enters the system at the end of a time period. This waiting time is 

estimated by computing the average amount of time it will take to complete service on all 

aircraft in the system at the time the new aircraft shows up. When i aircraft are in the 

system, a new aircraft can expect to wait i times the average service time. Since the state 

of the system is equal to the number of aircraft in the system, this amount is multiplied by 

the probability of being in state i. The results are computed and summed for all possible 

states. This calculation is accurate even when one of the aircraft in the system has been in 

service for a while. Since the service time is Markovian, it is memoryless and so the 

expected time remaining for an aircraft already in service is the same regardless of how 

long it has already been in service. 

Equation (5-5) demonstrates how this virtual waiting time is computed when the 

average service time is represented by l/\i. 

max 

i=i (5-5) 
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5.4 M(t)/Ek/1 Queue Model Solution 

This model allows more flexibility in the representation of the service time 

distribution. But, since servicing is accomplished in stages, the process is no longer a birth 

and death process and the rate matrix is no longer tri-diagonal. In order to determine the 

appropriate rate matrix, the parameters for the service time distribution must be accurately 

estimated. The method used in this study was to match the first two moments of the 

Erlangan-k distribution to the data for a peak period when significant delays were 

encountered. This procedure was performed on the data from 6:00 to 9:00 AM on 6 June 

and yielded an Erlang-2 distribution. 

5.4.1 M(t)/Ek/1 Model Rate Matrix 

As an example, a rate matrix is shown in Figure 5.2 for a system which has aircraft 

entering the system at a rate of 15 per hour and a service rate of 20 take-offs per hour and 

2 stages of service. 

-15 0     15   0    0    0    0    0    0    0 0 

40 -55 0     15   0    0    0    0    0    0 0 

0    40 -55 0     15   0    0    0    0    0 0 

0    0    40 -55 0     15   0    0    0    0 0 

0    0    0    40 -55 0     15   0    0    0 0 

0    0    0    0    40 -55 0     15   0    0 0 

0    0    0    0    0    40 -55 0     15   0 0 

0    0    0    0    0    0    40 -55 0     15 0 

0    0    0    0    0    0    0    40 -55 0 15 

00000000    40 -40 0 

00000000040^40 

R = 

Figure 5.2 Rate Matrix -- M(t)/E2/1 Queue Model 
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In this example, the maximum number of aircraft in the system is set to 5. This 

results in a matrix dimension of 11 since each of the 5 aircraft can have two stages of 

service, which accounts for 10 of the states. The one additional state is the 0 state. 

This rate matrix demonstrates how this type of system must increase k states at a 

time. In this model, an aircraft can be thought of as bringing k stages of service with it 

when it enters the system. The system state still decreases in increments of one since 

service is completed one stage at a time. The boundary conditions and the row total 

requirements are similar to those discussed for the M(t)/M/1 queue. 

5.4.2 M(t)/Ek/1 Model Queue Performance Results 

Now that the rate matrix has been determined, it is possible to calculate the 

transition matrix and then the estimated state probabilities using the same methods as the 

M(t)/M/1 model. However, the queue performance measure calculations are slightly more 

difficult In the equations which follow, "max" still represents the maximum number of 

aircraft in the system and i represents the number of stages of service that the aircraft 

presently in service has remaining. The subscript j represents the number of aircraft in the 

system. Equation (5-6) shows how the expected number in the queue may be determined. 

k max 

Nq«]T   (j-l> 
j=l 

Z   P%j-i)+i 
i=l (5-6) 

In this case, each k adjacent states above the 0 state represent the same number of 

aircraft in the system. When the system is in state k*(j-l)+i, there are j aircraft in the 

system and (j-1) aircraft in the queue. 
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The calculation of the variance of the queue length is similar to that used for the 

M(t)/M/1 model and is demonstrated by equation (5-7) below. 

max k 
n_n2.   V  P,, 

k(j-l)-H V<p£]   (j-1)2 I> 
i= 1 

(Nq)2 

(5-7) 

Finally, the calculation of the expected waiting time is demonstrated with equation 

(5-8). Average service time per aircraft is represented by 1/fi. 

max     k 

Pn        .Mizil±i rHlc(j-l)-H 

j=i   i=i (5-8) 
*-E S 

When the average service time is l/|i, and there are k stages of service, average time to 

complete each stage of service becomes l/k(i. 

5.5 M(t)/Ek/1 Server Absence Model Solution 

This model continues to use the Erlang representation of the service times. 

However, it also includes the explicit modeling of occasional server absences. In this 

model, the service time is distributed more Gaussian and thus has a much smaller variance 

than the models without explicit modeling of server absences. Therefore, it is important to 

use the Erlangan distribution to capture this much greater central tendency. The 

excursions from this service time distribution are modeled as a separate (server absence) 

process. The amount of time the server is absent is modeled with an Erlang distribution. 

The increase in the level of complexity for this model greatly increases the size of the state 

space and the complexity of the rate matrix. As a result, the solution of this model is 

much more computationally intensive. 
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5.5.1 M(t)/Ek/1 Server Absence Model Rate Matrix 

In the M(t)/M/1 model, each state represented a different number of aircraft in the 

system. The M(t)/Ek/1 model imposes almost a k-fold increase in the state space. This 

final model, the M(t)/Ek/1 server absence model, increases the size of the state space by 

almost (ki + k2) fold over the M(t)/M/1 model. The parameter kx represents the number 

of stages of service, while k2 represents the number of stages involved in the server's 

return from his absence. The following rate matrix is an example of the numerous types of 

state transitions which can occur. For this example, there are 2 stages of service and 2 

stages of return for a server absence. The rate that aircraft enter the system is 5, the 

service rate is 10, the absence probability is 0.2 and the absence return rate is 20. The 

maximum number of aircraft in the system is 2. The resulting matrix dimension for this 

example is Qci4k2)*max + k2 +1, or 11. 

-5 0005000000 

40-45 000500000 

0 40-45 000 5 0000 

16 0 4 -25 0 0 0 5 0 0 0 

0 0 0 20 -25 0 0 0 5 0 0 

0000 40-45 00050 

00000 40 -45 0005 

0 0 0 0 16 0 4 -20 0 0 0 

0 0 0 0 0 0 0 20 -20 0 0 

00000000 40-40 0 

000000000 40 ^0 

R = 

Figure 5.3 Rate Matrix -- M(t)/E2/1 Queue Model with Random Server Absences 

The diagonal of 5s represent increases in the state space due to aircraft entering 

the system. This shows that each entering aircraft increases the state of the system by 
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(ki+k2) states (4 states in the example). The intermittent diagonal of 16s represent the 

rate at which the final stage of service is completed on each aircraft when an absence does 

not occur immediately following it This is determined as the product of the probability 

that an absence does not occur and the rate of a stage of service, or (l-0.2)*ki*10 = 16. 

The elements with the value 4 represent the rate at which the final stage of service is 

completed on each aircraft when an absence does occur immediately following it This is 

equal to 0.2*kx*10 = 4. The elements with the value 40 represent the rate at which the 

stages of the absence are completed, which is equal to k2*20. The elements with the value 

20 represent the rate at which stages of service are completed for stages other than the last 

one, which is equal to ki*10. Finally, the diagonal elements, R«, are the negative of the 

total of the all the transition rates out of state i. 

As is evident from this example, the size of the rate matrix and its complexity has 

greatly increased. Nevertheless, the estimation of the state probabilities may still be 

accomplished with the approximation methods used in this study. One of the major 

disadvantages of this model turns out to be the large amount of computer time required to 

solve it This issue will be addressed in Chapter 6. 

5.5.2 M(t)/Ek/1 Server Absence Model Queue Performance Results 

As the complexity of the rate matrix would indicate, the computation of the queue 

performance measures is more difficult than the previous two models. In this model the 

first (k2+l) states represent 0 aircraft in the system. After these "0 states," each (ki+k2) 

states represent another aircraft. The formula for the expected queue length is Equation 

(5-9). 
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max 

Nq»2   0-1)' 
j=l 

(k1 + k2) 

Pn (k1+k2)j-ki+i 
i=l (5-9) 

Whenever there are j aircraft in the system, there are (j-1) aircraft in the queue. 

The probability of having j aircraft in the system is equal to the sum of the (ki+k2) adjacent 

state probabilities which represents that number of aircraft 

The estimation of the variance is accomplished with a formula similar to (5-7). 

max 

Vqp£   (j-D2 

j=l 

(k1 + k2) 

Pn (k1+k2)j-k1+-i 
i=l 

(Nq)z 

(5-10) 

Finally, the estimation of the waiting time is a bit more involved since future server 

absences will increase the expected time to complete service. In equation (5-11), \i is the 

service rate, a is the absence return rate, and p is the probability of a server absence at the 

completion of a stage of service. 

Tcp 

max 

U=i 
ZJ  

Pn(ki+k^j-ki-H 
i=l 

krü-D + i| (j-i).p 

kr|A a 2 %+^-j+i- 
i=l 

U * , a-l>p 
^i   k^a        a 

J(5-ll) 

(a)   (b) (bl)        (b2)       (c) (cl)(c2)   (c3) 

The summation over variable j (a) represents the number total number of aircraft 

that can be in the system. The first summation over variable i (b) represents those states 

for which the server is present. The first term in this summation (bl) represents the 

expected amount of time to complete all the stages of service for the state of interest. The 

second term in this summation (b2) represents the expected amount of delay due to future 

server absences. The second summation over variable i (c) represents those states for 
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which the server is absent The first term in this summation (cl) represents the expected 

amount of time to complete all the stages of service for the state of interest. The second 

term (c2) represents the amount of time required to complete the amount of absence time 

remaining. The third term (c3) represents the expected amount of delay due to future 

server absences. 

5.6 Computer Implementation 

The methodology described in this chapter was coded into FORTRAN for 

implementation. The programs first perform the automated creation of the rate matrix 

from user input system parameters and rates. The programs then perform the transition 

matrix estimation algorithm, compute the estimated state probabilities and finally compute 

the queue performance measures. 

Four computer programs were written. The first two compute the solution for the 

M(t)/Ek/1 model using the two estimation techniques presented. The second two 

programs handle the M(t)/Ek/1 model with random server absences for the two estimation 

techniques. The M(t)/M/1 model solution is obtained using one of the M(t)/Ek/1 model 

programs and setting the parameter k equal to one. The programs which implement the 

solution using approximation method two call an IMSL library matrix inversion subroutine 

(8:1130). 

All programs output expected queue length, queue length standard deviations, and 

expected waiting times in minutes. These queue performance measures, the rate matrix 

and the state probability matrix are written to separate output files. The FORTRAN code 

and instructions on how to implement them are included in Appendix 4. 
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5.7 Conclusion 

The primary feature of the departure queue at LaGuardia Airport is its transitory 

nature. Therefore, the system was represented with Markovian models in order to 

facilitate the estimation of transitory state probabilities and queue performance measures. 

The two estimation techniques are used to solve for the transition matrix for the departure 

queue models. These results were then used to estimate state probabilities and queue 

performance measures. Chapter 6 presents the results for how these models performed 

for LaGuardia's departure queue for the seven days of the study. 
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6. Results 

6.1 Overall 

Each of the models developed generates estimates for the system state probabilities 

for the end of each time period. These results provide the user with a large degree of 

flexibility. Although the primary system performance measures for this study are the 

expected queue length and the expected waiting times, the state probabilities may be used 

to obtain a host of other measures of interest. For example, if the user were interested in 

the probability of the airport experiencing a queue length greater than a certain amount, he 

could easily determine this using the state probabilities generated. 

The exponential and the Erlang models were executed with the days for which 

adequate data existed. These days were 3 through 7 June. The absence model was 

executed only for 6 and 7 June, because these were the days for the which absences had 

the most significant effect. The outputs of these models were plotted and compared to the 

actual roll-out times experienced at LGA for those days. 

The 6th and 7th of June were the only days of the study which had any significant 

amount of time with weather worse than Visual Meteorological Conditions (VMC). They 

were also the days which experienced the most significant patterns of departure delays. 

Therefore, the data from these days will be used as the primary basis to evaluate the 

models. The complete set of plots may be found in Appendix 5. 

In order to calibrate each model, the output had to be correlated to the type of 

data recorded at the airport. One of the models' primary output measures is the time- 
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dependent queue length. However, queue lengths are not available in the data set. 

Therefore, the models' output also generates estimates for the expected waiting time of an 

aircraft that enters the system at the end of a time period. This expected waiting time is 

then combined with an estimate for the time spent between pushback and the time an 

aircraft shows up at the queue to determine an estimate for the roll-out time. Since roll- 

out time is readily obtained from the data set, it is the primary performance measure used 

to correlate the model output to the airport's actual performance. 

Li order to determine the best fit of model output to the data, the models were run 

at various effective service rates and the results compared to the observed data. The 

results of this calibration are demonstrated below using the exponential service time 

model, the Erlang service time model and the absence model. 

6.2 Exponential Model Results 

LGA operated on runways 22/13 for the majority of the day on Monday, 6 June. 

The 22/13 configuration is listed in the FAA data dictionary as the preferred configuration 

for LGA (4:2). This is reflected in the Quality Performance Measurement data by the fact 

that this configuration allows one of the greatest take-off rates (39 per hour). However, 

LGA experienced some of its most significant delays on this date. The recorded weather 

and the LGA data dictionary provide a possible explanation. 

The surface winds on 6 June varied from 150 to 180 degrees. The data dictionary 

reveals that LGA may experience departure delays when departing runway 13, if Kennedy 

International Airport is performing a special type of approach to runway 13L (4:4). 

Although this could not be confirmed, the wind direction and the weather support the 
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existence of this condition. This might explain why LGA experienced a low effective 

service rate on 6 June when its departure capacity was reported to be one of LGA's 

highest 

In Chapter 3, it was determined that the observed roll-out time during non-peak 

periods could be modeled as a normal distribution with a mean of 13 minutes. The 

exponential model output for this same non-peak period, using an effective service rate of 

24 take-offs per hour, resulted in an average wait of 5 minutes. Therefore, the difference 

(13 - 5 = 8) was used as the nominal taxi time. The service rate of 24 take-offs per hour 

was determined during model calibration. This was the rate which resulted in queue 

performance patterns which most closely matched those observed on that day. 

EXPONENTIAL MODEL 
Monday, 6 June 

-♦— Observed 

■•■»•••• serv^4 

Time of Day 

Figure 6.1 Exponential Model Results -- 6 June 

This model demonstrates a fairly good fit to the data when an effective service rate 

of 24 take-offs per hour is used. However, it does appear that the effective service rate 

may have dropped below 24 between 3:00 and 5:00 PM. 
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LGA was again operating on runway 22/13 on 7 June from 6:00 to 7:15 AM. 

However, the wind direction in the morning varied from 180 to 220 degrees. This wind 

direction may indicate that Kennedy was not operating on runway 13 and thus not 

performing the type of approaches which interfere signficantly with LGA. If this were the 

case, it would be expected that the actual effective departure capacity would correlate 

more closely with the reported capacity. The reported departure capacity for 7 June was 

greatest for the first hour and a half. The reported capacity was lower for most of the 

remainder of the day. This may explain why the effective rate appears to start out high 

and then stabilizes at a lower amount. A service rate of 25 take-offs per hour generates 

the best fitting exponential model output for the majority of the day. 

EXPONENTIAL MODEL 
Tuesday, 7 June 

30 
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Figure 6.2 Exponential Model Results -- 7 June 

This plot demonstrates good correlation to the roll-out times actually observed 

except for the period from 6:00 to 8:00 AM. As mentioned before, the reported weather 

and departure capacities were worse on 7 June than they were on 6 June, yet the model 

calibration indicates that the effective service rate was greater on 7 June. This may be due 
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to other outside influences (e.g. interference from aircraft flying approaches at Kennedy on 

6 June). Overall, the exponential model demonstrates good correlation to the roll-out 

times actually observed for 6 and 7 June. 

6.3 Erlang-2 Model Results 

The Erlang model was executed for 6 June using several different service rates. 

The output using an effective service rate of 23 take-offs per hour generated the results 

which most closely matched the airport's performance on that day. For the Erlang models, 

the average time between pushback and queue entry was estimated to be 10 minutes. 

ERLANG-2 MODEL 
Monday, 6 June 

o m-m-mm-m-m- 
O      CM     ■* 

■ Observed 

- Serv=23 

tOOOOCMM-tDOOOCM'* 
^-r- - _,-        i-        T-        CM        CM        CM 

me of Day 

Figure 6.3 Erlang Model Results -- 6 June 

This graph demonstrates a similar ability to correlate variations in the roll-out time 

observed to the time-variant take-off demand process. 

The Erlang-2 model results from 7 June use an effective service rate of 26 take- 

offs per hour. 
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ERLANG-2 MODEL 
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Figure 6.4 Erlang-2 Model Results -- 7 June 

The Erlang-2 model demonstrates a good fit for the data on 7 June. Once again 

the effective service rate appears to have been somewhat greater than 26 take-offs per 

hour for the first two hours of the day. 

6.4 Absence Model Results 

This model was performed for 6 June assuming an overall service rate of 35 take- 

offs per hour, which is close to that reported for this day. This model does not use a 

fractional service rate because the periods of time when general aviation aircraft are using 

the runway are modeled separately as a server absence. The probability that the runway 

would not be available to service an aircraft in this queue was estimated to be 0.2. In 

Chapter 3, it was shown how this value was estimated from the peak period observations 

on that day. 

This model's output for 6 June demonstrates a reasonable fit to the data. 

Although a single probability for an absence was used for the entire day, the actual 
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probability should vary just as the demand rate does. Determining these variable rates is 

beyond the scope of this study. 

ABSENCE MODEL 
Monday, 6 June 

Observed 

Expected 

Time of Day 

Figure 6.5 Absence Model Results -- 6 June 

The absence model for 7 June also used an overall service rate of 35 take-offs per 

hour. However, the probability of an absence was estimated to be 0.23. 

ABSENCE MODEL 
Tuesday, 7 June 

■ Observed 

- Expected 

Time of Day 

Figure 6.6 Absence Model Results -- 7 June 
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Although the absence model has an intuitive appeal, it requires the estimation of 

hourly probabilities of absence in order to generate results that are any better than the 

exponential and the Erlang models. If the statistical relationship between these 

probabilities of absence and the effective service rate could be determined, the absence 

model might turn out to be the more accurate model. 

6.5 Service Distribution Comparison 

In order to observe the effect of changing the number of stages of service, the 

Erlang model was executed with 1,2 and 4 stages of service. The runs were performed 

with the 6 June data and a service rate of 24 take-offs per hour. 

Service Time Distribution Comparison 
6 June, Service Rate = 24/hr 
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Figure 6.1 Service Time Distribution Comparison 

This plot demonstrates that the primary effect is a reduction in the variability of the 

output results. This should be expected since the variance of the service time distribution 

decreases as the number of stages of service increases. 
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6.6 Alternative Time Period Lengths 

All three models have the ability to use time periods of various lengths. To 

demonstrate this capability, the pushback data was determined for 0.5 hour time blocks. 

These rates were then used as the input for the Erlang model 

ERLANG-2 MODEL, T = 0.5 
Monday, 6 June 

■Observed 

- serv^4 

Time of Day 

Figure 6.8 Eriang-2 Model Results -- Time Period = 0.5 hour 

This result generates a much more erratic graph. However, this should not be 

interpreted as a lack of precision. In fact, reference to the actual roll-out time plots in 

Appendix 1 indicates that the roll-outs themselves varied significantly about the local 

average. This model indicates that much of this variability may be due to the highly 

variable demand process. 

6.7 Computer Code Execution 

A listing of the FORTRAN computer code and a user's guide is provided in 

Appendix 4. Four programs are included: Two for the Erlang model and two for the 
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absence model. The Erlang model and the absence model each have separate programs to 

employ each of the two approximation methods. 

The computer code developed employs a very simple algorithm for the calculation 

of the matrix products. This algorithm performs every multiplication and does not take 

advantage of any special characteristic of the matrices. It may be possible to improve 

computation times if a more efficient matrix multiplication subroutine can be found. 

The programs which use the approximation method with matrix inversions call an 

IMSL subroutine. Surprisingly, the implementation of the models with the matrix 

inversion does not noticeably increase the computation time over that experienced for the 

non-inversion models. The matrix multiplications appear to be responsible for the largest 

portion of the computation time. 

The programs were executed on a UNIX, SPARC-20 computer terminal. As was 

expected, computation times were found to be quadratically related to the dimension of 

the rate matrix. Several executions were performed with gradually increasing matrix 

dimensions. The results are graphed in Figure 6.9. 
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Figure 6.9 Computation Times 
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These results were generated using one time period of data, and an accuracy factor 

of 6 (meaning that six matrix multiplications were performed for one run). For the Erlang- 

2 models with a maximum queue length of 25, the resulting matrix dimensions were 52 X 

52. For this model, 15 time periods (hours) of data took about 20 seconds of cpu time. 

However, as demonstrated in the graph above, computation times become a problem for 

the increased dimensionality of the typical absence model. The two executions of the 

absence model for this study had matrix dimensions of 385 X 385. It took approximately 

7.5 minutes for one time period and approximately two hours to complete 15 time periods 

of data. 

6.8 Conclusion 

All of the models in this study demonstrated good ability to relate the variable 

demand rates to the delay patterns actually observed at LGA. The exponential model 

assumes a Markovian service process and thus models this process with larger variance 

than actually observed. The Erlang model uses a probability distribution which matches 

the actual service process more closely. The absence model attempts to explicitly model 

the variance in the service process and has the potential to achieve the closest fit for the 

service time distribution. However, the absence model proved to be much more difficult 

to employ and much more time consuming than the Erlang model. 
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7. Conclusions 

7.1 Summary 

The purpose of this research was to develop an improved model for the aircraft 

departure process at an airport. The model developed was to be used to improve the 

representation of the departure delay process. It was also to be used to improve the ability 

to predict the occurrence of delays. 

Initial data analysis indicated that the departure delay process was non-stationary. 

The primary factor which influenced the occurrence of these delays was determined to be 

the time variant demand rate. Although this demand process was non-stationary, it was 

determined that it could be reasonably modeled as a homogeneous Markovian process 

when analyzed in short periods of time (one hour or less). 

The model was developed with data from LaGuardia airport, which typically uses 

one runway for arrivals and one for departures. Therefore, the departure process was 

assumed to have a single server. The service process was found to be reasonably modeled 

as a Markovian process. However, it was determined that the service process was more 

accurately represented with an Erlang distribution. As a result, the method of stages was 

used in modeling the service process. This enabled a closer probability distribution fit for 

this service process and allowed the model to be Markovian. The use of a Markovian 

model was important for calculating the transitory solution to the non-stationary process. 

Three models were developed and analyzed: the exponential model, the Erlang 

model and the absence model. The Erlang model is the recommended model. Its results 
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correlate well with the actual delays observed at LGA. In addition, it has the flexibility to 

fit the actual service time distribution more closely. Finally, it generates results quickly 

and efficiently. 

One of the primary advantages of the Erlang model developed is its flexibility in 

representing the service times. If the data set had been more complete and included all 

scheduled aircraft departures, the service time representation could easily be modified to 

accurately model this process. In this case, the service process would not experience as 

much variation because the GAA departures might be included in the data set. Also, the 

resulting service process should take on a more Gaussian shape. This is easily achieved 

with the Erlang model by increasing the number of stages of service.  The flexible service 

time representation afforded by the Erlang model might also enable this type of model to 

be used at classes of airports different from LaGuardia. Current models do not provide 

this flexibility for service time representation. 

Another advantage of using the Erlang model for departure capacity estimation is 

that it allows the user to see periods of time when the effective service rate varies. It also 

smoothes out the results over time. This helps to avoid over estimation of capacity when 

the surges in effective service rate occur. Some methods for capacity estimation require 

identifying when these surges occur and then ignoring those observations (6:146). 

The models developed in this study may also have applications for a single runway 

configuration where departures and arrivals utilize the same runway. In this case, the 

periodic preemption of the runway by blocks of landing aircraft could be accurately 
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represented by increasing the service time variance in the Erlang model, or increasing the 

probability of a server absence in the absence model. 

7.2 Applications 

It is believed that the models developed in this study could be used to improve 

estimation of the effective service rate for the set of aircraft under study. The correlation 

of these rates to factors such as the number of GAA departures, the weather, the 

operating configuration, etc., would allow the use of these models to aid in the prediction 

of departure queues and departure delays at an airport. 

Whereas the determination of effective service rates was accomplished using the 

actual pushback (gate departure) times, delay prediction could be accomplished using the 

Official Airline Guide (OAG) scheduled pushback times. In the absence of properly 

correlated effective service rates, the best fitting effective service rate could be determined 

for an hour just completed. This rate might then be used to estimate the effective service 

rate for the next hour. 

At the present time, departure delay prediction is virtually non-existent. A delay is 

only predicted if an aircraft has not departed by five minutes after its expected take-off 

time. The expected take-off time is determined by adding an estimated taxi-out time to 

the OAG scheduled gate departure (pushback) time. If the aircraft has not taken off at its 

current predicted take-off time, this time is incremented five minutes. The process 

continues until the aircraft takes off or an hour has passed. At one hour past the original 

time, the aircraft is deleted from the system. If the aircraft subsequently takes off, it is 
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reentered into the system. (21:1) The models developed in this study may be useful for 

improving the process. 

Finally, it is worth mentioning several other model applications. Since the output 

includes the probability distribution for the state vector at the end of each time period, it is 

possible to estimate the probability of long queues. Using the Erlang model output from 6 

June, and an effective service rate of 23 take-offs per hour, there is a 10 % chance that the 

queue length will be greater than 17 aircraft at 9:00 AM. This type of analysis may be 

useful in helping to avoid extremely "ugly" departure queues. 

Another application may be to determine what effect opening the airport earlier 

and scheduling departures more uniformly would be. Again using the Erlang model 

results from 6 June, if the airport were opened one hour earlier and the number of 

pushbacks (gate departures) were scheduled more uniformly and limited to 20 per hour, 

the expected mean waiting time remains below 22 minutes. In addition, there is a 90 % 

probability that the queue length will remain below 11 aircraft. 

7.3 Recommendations for Further Research 

This study was performed with a limited data set. There were only two days which 

experienced significant delays. With more days of data it may be possible to determine the 

statistical significance of the various factors which contribute to reduced effective service 

rates, and consequently, departure delays. In addition, further research could be 

performed to determine the applicability of these models to larger airports and different 

runway configurations. 
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Appendix 1: Data Plots 
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Appendix 2: Goodness of Fit Test Results 

Kolmogorov-Smirnov Goodness of Fit test for the Exponential Dist. 
6 June Hourly Gate Departure Times 

decimal elapsed normalized i D+ D- 
hour minute times 

6.3 0 0 0 
6.35 3 0.073171 1 -0.03 0.073 

6.4 6 0.146341 2 -0.06 0.105 
6.467 10 0.243902 3 -0.12 0.161 
6.467 10 0.243902 4 -0.08 0.119 
6.467 10 0.243902 5 -0.04 0.077 
6.483 11 0.268293 6 -0.02 0.06 
6.483 11 0.268293 7 0.023 0.018 

6.5 12 0.292683 8 0.041 0.001 
6.5 12 0.292683 9 0.082 -0.041 
6.5 12 0.292683 10 0.124 -0.082 

6.517 13 0.317073 11 0.141 -0.1 
6.583 17 0.414634 12 0.085 -0.044 

6.65 21 0.512195 13 0.029 0.012 
6.65 21 0.512195 14 0.071 -0.029 

6.667 22 0.536585 15 0.088 -0.047 
6.817 31 0.756098 16 -0.09 0.131 
6.867 34 0.829268 17 -0.12 0.163 
6.883 35 0.853659 18 -0.1 0.145 

6.95 39 0.95122 19 -0.16 0.201 
6.983 41 1 20 -0.17 0.208 
6.983 41 1 21 -0.13 0.167 
6.983 41 1 22 -0.08 0.125 
6.983 41 1 23 -0.04 0.083 
6.983 41 1 24 -0 0.042 

max D- max D- 
0.141    0.208 

decimal elapsed normalized i D+ D- 
hour minute times 

7.0167 1 0.016667 0 
7.0167 1 0.016667 1 0.029 0.017 
7.2333 14 0.233333 2 -0.142 0.188 
7.2333 14 0.233333 3 -0.097 0.142 
7.2667 16 0.266667 4 -0.085 0.13 
7.2833 17 0.283333 5 -0.056 0.102 

7.4 24 0.4 6 -0.127 0.173 
7.4333 26 0.433333 7 -0.115 0.161 
7.4667 28 0.466667 8 -0.103 0.148 

7.5 30 0.5 9 -0.091 0.136 
7.5 30 0.5 10 -0.045 0.091 
7.5 30 0.5 11 0 0.045 

7.5167 31 0.516667 12 0.029 0.017 
7.5167 31 0.516667 13 0.074 -0.029 

7.55 33 0.55 14 0.086 -0.041 
7.55 33 0.55 15 0.132 -0.086 

7.5667 34 0.566667 16 0.161 -0.115 
7.5667 34 0.566667 17 0.206 -0.161 
7.8833 53 0.883333 18 -0.065 0.111 

7.9 54 0.9 19 -0.036 0.082 
7.95 57 0.95 20 -0.041 0.086 
7.95 57 0.95 21 0.005 0.041 

7.9833 59 0.983333 22 0.017 0.029 

max DH max D- 
0.206   0.188 

Dcrit = 0.245, alpha = 0.1, 24 df Dcrit = 0.25, alpha = 0.1, 22 df 

Conclusion: Do not reject fit at alpha = 0.1      Conclusion: Do not reject fit at alpha = 0.1 
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decimal elapsed normalized i D+ D- 
hour minute times 
8.017 1 0.016667 0 

8.05 3 0.05 1 -0 0.05 
8.067 4 0.066667 2 0.029 0.019 
8.183 11 0.183333 3 -0.04 0.088 
8.233 14 0.233333 4 -0.04 0.09 
8.417 25 0.416667 5 -0.18 0.226 
8.467 28 0.466667 6 -0.18 0.229 
8.483 29 0.483333 7 -0.15 0.198 
8.483 29 0.483333 8 -0.1 0.15 
8.483 29 0.483333 9 -0.05 0.102 

8.5 30 0.5 10 -0.02 0.071 
8.5 30 0.5 11 0.024 0.024 
8.5 30 0.5 12 0.071 -0.024 

8.533 32 0.533333 13 0.086 -0.038 
8.55 33 0.55 14 0.117 -0.069 

8.617 37 0.616667 15 0.098 -0.05 
8.617 37 0.616667 16 0.145 -0.098 
8.65 39 0.65 17 0.16 -0.112 

8.7 42 0.7 18 0.157 -0.11 
8.967 58 0.966667 19 -0.06 0.11 
8.967 58 0.966667 20 -0.01 0.062 

maxD- maxD- 

.26, alp ha = 0.1, 21 dl 
0.16 0.2291 

Dcrit = 0 

decimal elapsed normalized i D+ D- 
hour    minute times 

9 0 0 0 
9 0 0 1 0.045 0 

9.0333 2 0.033333 2 0.058 -0.012 
9.05 3 0.05 3 0.086 -0.041 

9.1 6 0.1 4 0.082 -0.036 
9.2167 13 0.216667 5 0.011 0.035 

9.45 27 0.45 6 -0.177 0.223 
9.4667 28 0.466667 7 -0.148 0.194 

9.5 30 0.5 8 -0.136 0.182 
9.5 30 0.5 9 -0.091 0.136 

9.6333 38 0.633333 10 -0.179 0.224 
9.6667 40 0.666667 11 -0.167 0.212 
9.7167 43 0.716667 12 -0.171 0.217 
9.7333 44 0.733333 13 -0.142 0.188 

9.75 45 0.75 14 -0.114 0.159 
9.7833 47 0.783333 15 -0.102 0.147 
9.8167 49 0.816667 16 -0.089 0.135 
9.8667 52 0.866667 17 -0.094 0.139 

9.9 54 0.9 18 -0.082 0.127 
9.95 57 0.95 19 -0.086 0.132 

9.9667 58 0.966667 20 -0.058 0.103 
9.9833 59 0.983333 21 -0.029 0.074 

max DH max D- 
Dcrit = 0.25 alph a = 0.1, 22 df 0.201 0.081 

Conclusion: Do not reject fit at alpha = 0.1      Conclusion: Do not reject fit at alpha = 0.1 

10.07 4 0.066667 0 
10.3 18 0.3 1 -0.23 0.3 

10.42 25 0.416667 2 -0.27 0.345 
10.45 27 0.45 3 -0.24 0.307 

10.5 30 0.5 4 -0.21 0.286 
10.5 30 0.5 5 -0.14 0.214 
10.6 36 0.6 6 -0.17 0.243 
10.6 36 0.6 7 -0.1 0.171 

10.67 40 0.666667 8 -0.1 0.167 
10.77 46 0.766667 9 -0.12 0.195 
10.83 50 0.833333 10 -0.12 0.19 
10.93 56 0.933333 11 -0.15 0.219 
10.93 56 0.933333 12 -0.08 0.148 
10.95 57 0.95 13 -0.02 0.093 

maxD- maxD- 
-0.02 0.345| 

Dcrit = 0.349, alpha = 0.05,14 df 
Conclusion: Do not reject fit at alpha = 0.05 

11.017 1 0.016667 0 
11.1 6 0.1 1 -0.041 0.1 

11.133 8 0.133333 2 -0.016 0.075 
11.183 11 0.183333 3 -0.007 0.066 

11.2 12 0.2 4 0.035 0.024 
11.233 14 0.233333 5 0.061 -0.002 

11.5 30 0.5 6 -0.147 0.206 
11.5 30 0.5 7 -0.088 0.147 

11.567 34 0.566667 8 -0.096 0.155 
11.6 36 0.6 9 -0.071 0.129 

11.633 38 0.633333 10 -0.045 0.104 
11.633 38 0.633333 11 0.014 0.045 

11.85 51 0.85 12 -0.144 0.203 
11.85 51 0.85 13 -0.085 0.144 

11.917 55 0.916667 14 -0.093 0.152 
11.933 56 0.933333 15 -0.051 0.11 

11.95 57 0.95 16 -0.009 0.068 
11.967 58 0.966667 17 0.033 0.025 

I max DH max D- 
0.061 0.206 

Dcrit = 0.286, alpha = 0.1,17 df 
Conclusion: Do not reject fit at alpha = 0.1 
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decimal elapsed normalized i D+ D- 
hour minute times 

12 0 0 0 
12.05 3 0.05 1 0.021 0.05 
12.23 14 0.233333 2 -0.09 0.162 
12.23 14 0.233333 3 -0.02 0.09 
12.23 14 0.233333 4 0.052 0.019 
12.47 28 0.466667 5 -0.11 0.181 

12.5 30 0.5 6 -0.07 0.143 
12.5 30 0.5 7 0 0.071 
12.5 30 0.5 8 0.071 0 

12.53 32 0.533333 9 0.11 -0.038 
12.68 41 0.683333 10 0.031 0.04 
12.82 49 0.816667 11 -0.03 0.102 
12.85 51 0.85 12 0.007 0.064 
12.95 57 0.95 13 -0.02 0.093 
12.95 57 0.95 14 0.05 0.021 

maxD- maxD- 
0.16 0.1811 

Dcrit = 0.314, alpha = 0.1,14 df 
Conclusion: Do not reject fit at alpha = 0.1 

decimal elapsed normalized i D+ D- 
hour minute times 

13.117 7 0.116667 0 
13.117 7 0.116667 1 -0.061 0.117 
13.167 10 0.166667 2 -0.056 0.111 
13.183 11 0.183333 3 -0.017 0.072 
13.233 14 0.233333 4 -0.011 0.067 
13.267 16 0.266667 5 0.011 0.044 

13.3 18 0.3 6 0.033 0.022 
13.383 23 0.383333 7 0.006 0.05 

13.5 30 0.5 8 -0.056 0.111 
13.5 30 0.5 9 0 0.056 

13.633 38 0.633333 10 -0.078 0.133 
13.7 42 0.7 11 -0.089 0.144 

13.717 43 0.716667 12 -0.05 0.106 
13.733 44 0.733333 13 -0.011 0.067 
13.817 49 0.816667 14 -0.039 0.094 
13.933 56 0.933333 15 -0.1 0.156 

13.95 57 0.95 16 -0.061 0.117 
13.967 58 0.966667 17 -0.022 0.078 
13.967 58 0.966667 18 0.033 0.022 

maxDn maxD- 

286, alp >ha = 0.1,17d 
0.033 0.156 

Dcrit = 0 
Conclusion: Do not reject fit at alpha = 0.1 

14 0 0 0 
14.05 3 0.05 1 0.017 0.05 

14.2 12 0.2 2 -0.07 0.133 
14.4 24 0.4 3 -0.2 0.267 

14.47 28 0.466667 4 -0.2 0.267 
14.5 30 0.5 5 -0.17 0.233 
14.5 30 0.5 6 -0.1 0.167 

14.58 35 0.583333 7 -0.12 0.183 
14.6 36 0.6 8 -0.07 0.133 

14.72 43 0.716667 9 -0.12 0.183 
14.82 49 0.816667 10 -0.15 0.217 
14.93 56 0.933333 11 -0.2 0.267 
14.93 56 0.933333 12 -0.13 0.2 
14.93 56 0.933333 13 -0.07 0.133 
14.93 56 0.933333 14 -0 0.067 
14.97 58 0.966667 15 0.033 0.033 

maxD- maxD- 
0.033 0.267| 

15.017 1 0.016667 0 
15.083 5 0.083333 1 -0.028 0.083 
15.117 7 0.116667 2 -0.006 0.061 
15.183 11 0.183333 3 -0.017 0.072 

15.2 12 0.2 4 0.022 0.033 
15.25 15 0.25 5 0.028 0.028 
15.25 15 0.25 6 0.083 -0.028 

15.283 17 0.283333 7 0.106 -0.05 
15.283 17 0.283333 8 0.161 -0.106 
15.367 22 0.366667 9 0.133 -0.078 

15.5 30 0.5 10 0.056 0 
15.5 30 0.5 11 0.111 -0.056 

15.517 31 0.516667 12 0.15 -0.094 
15.533 32 0.533333 13 0.189 -0.133 

15.9 54 0.9 14 -0.122 0.178 
15.933 56 0.933333 15 -0.1 0.156 
15.967 58 0.966667 16 -0.078 0.133 
15.983 59 0.983333 17 -0.039 0.094 
15.983 59 0.983333 18 0.017 0.039 

I max DA max D- 
0.189 0.178 

Dcrit = 0.304, alpha = 0.1,15 df 
Conclusion: Do not reject fit at alpha = 0.1 

Dcrit = 0.278, alpha = 0.1,18 df 
Conclusion: Do not reject fit at alpha = 0.1 

A2-3 



decimal elapsed normalized i D+ D- 
hour minute times 
16.05 3 0.05 0 
16.17 10 0.166667 1 -0.1 0.167 
16.22 13 0.216667 2 -0.09 0.154 
16.28 17 0.283333 3 -0.1 0.158 
16.35 21 0.35 4 -0.1 0.163 
16.43 26 0.433333 5 -0.12 0.183 
16.45 27 0.45 6 -0.07 0.137 
16.45 27 0.45 7 -0.01 0.075 
16.47 28 0.466667 8 0.033 0.029 

16.5 30 0.5 9 0.063 0 
16.5 30 0.5 10 0.125 -0.063 

16.67 40 0.666667 11 0.021 0.042 
16.92 55 0.916667 12 -0.17 0.229 
16.93 56 0.933333 13 -0.12 0.183 
16.95 57 0.95 14 -0.07 0.137 
16.95 57 0.95 15 -0.01 0.075 
16.98 59 0.983333 16 0.017 0.046 

maxD- maxD- 
0.125 0.2291 

Dcrit = 0.295, alpha = 0.1, 16 df 
Conclusion: Do not reject fit at alpha = 0.1 

18 0 0 0 
18.02 1 0.016667 1 0.029 0.017 
18.12 7 0.116667 2 -0.03 0.071 
18.15 9 0.15 3 -0.01 0.059 
18.22 13 0.216667 4 -0.03 0.08 
18.25 15 0.25 5 -0.02 0.068 
18.28 17 0.283333 6 -0.01 0.056 
18.42 25 0.416667 7 -0.1 0.144 
18.52 31 0.516667 8 -0.15 0.198 
18.52 31 0.516667 9 -0.11 0.153 
18.55 33 0.55 10 -0.1 0.141 
18.68 41 0.683333 11 -0.18 0.229 

18.7 42 0.7 12 -0.15 0.2 
18.7 42 0.7 13 -0.11 0.155 

18.75 45 0.75 14 -0.11 0.159 
18.77 46 0.766667 15 -0.08 0.13 
18.82 49 0.816667 16 -0.09 0.135 
18.83 50 0.833333 17 -0.06 0.106 
18.92 55 0.916667 18 -0.1 0.144 
18.93 56 0.933333 19 -0.07 0.115 
18.95 57 0.95 20 -0.04 0.086 
18.98 59 0.983333 21 -0.03 0.074 
18.98 59 0.983333 22 0.017 0.029 

maxD- maxD- 

,alp ha = 0.1, 22 dl 
0.029 0.2291 

Dcrit = 0.25 

decimal elapsed normalized i D+ D- 
hour minute times 

17 0 0 0 
17.033 2 0.033333 1 0.022 0.033 

17.05 3 0.05 2 0.061 -0.006 
17.067 4 0.066667 3 0.1 -0.044 
17.183 11 0.183333 4 0.039 0.017 

17.35 21 0.35 5 -0.072 0.128 
17.417 25 0.416667 6 -0.083 0.139 

17.45 27 0.45 7 -0.061 0.117 
17.5 30 0.5 8 -0.056 0.111 
17.5 30 0.5 9 0 0.056 

17.517 31 0.516667 10 0.039 0.017 
17.6 36 0.6 11 0.011 0.044 

17.683 41 0.683333 12 -0.017 0.072 
17.767 46 0.766667 13 -0.044 0.1 
17.767 46 0.766667 14 0.011 0.044 
17.867 52 0.866667 15 -0.033 0.089 

17.9 54 0.9 16 -0.011 0.067 
17.917 55 0.916667 17 0.028 0.028 

17.95 57 0.95 18 0.05 0.006 
I maxDn maxD- 

0.1 0.139 
Dcrit = 0.278, alpha = 0.1,18 df 
Conclusion: Do not reject fit at alpha = 0.1 

19.033 2 0.033333 0 
19.083 5 0.083333 1 1E-15 0.083 
19.117 7 0.116667 2 0.05 0.033 
19.133 8 0.133333 3 0.117 -0.033 
19.267 16 0.266667 4 0.067 0.017 
19.283 17 0.283333 5 0.133 -0.05 
19.467 28 0.466667 6 0.033 0.05 
19.517 31 0.516667 7 0.067 0.017 
19.617 37 0.616667 8 0.05 0.033 
19.717 43 0.716667 9 0.033 0.05 

19.8 48 0.8 10 0.033 0.05 
19.917 55 0.916667 11 -1E-15 0.083 
19.983 59 0.983333 12 0.017 0.067 

max DH max D- 
0.133 0.083 

Conclusion: Do not reject fit at alpha = 0.1 

Dcrit = 0.338, alpha = 0.1,12 df 
Conclusion: Do not reject fit at alpha = 0.1 
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decimal elapsed normalized i D+ D- 
hour minute times 
20.02 1 0.004167 0 
20.38 23 0.095833 1 -0.03 0.096 
20.58 35 0.145833 2 -0.01 0.079 
20.95 57 0.2375 3 -0.04 0.104 
20.97 58 0.241667 4 0.025 0.042 
21.07 64 0.266667 5 0.067 -6E-17 
21.22 73 0.304167 6 0.096 -0.029 
21.32 79 0.329167 7 0.138 -0.071 
21.33 80 0.333333 8 0.2 -0.133 
21.55 93 0.3875 9 0.213 -0.146 

21.7 102 0.425 10 0.242 -0.175 
22.73 164 0.683333 11 0.05 0.017 
22.92 175 0.729167 12 0.071 -0.004 
23.33 200 0.833333 13 0.033 0.033 
23.57 214 0.891667 14 0.042 0.025 
23.82 229 0.954167 15 0.046 0.021 

maxD- maxD- 
0.242 0.104| 

Dcrit = 0.304, alpha = 0.1,15 df 
Conclusion: Do not reject fit at alpha = 0.1 
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Chi Square Goodness of Fit Test for the Exponential Distribution 
6 June, 06:20 - 08:20, Gate Departure Times 

decimal gap decimal gap 
hour  time hour   time 

6.3 7.2333 13 
6.35 3 7.2333 0 

6.4 3 7.2667 2 
6.4667 4 7.2833 1 
6.4667 0 7.4 7 
6.4667 0 7.4333 2 
6.4833 1 7.4667 2 
6.4833 0 7.5 2 

6.5 1 7.5 0 
6.5 0 7.5 0 
6.5 0 7.5167 1 

6.5167 1 7.5167 0 
6.5833 4 7.55 2 

6.65 4 7.55 0 
6.65 0 7.5667 1 

6.6667 1 7.5667 0 
6.8167 9 7.8833 19 
6.8667 3 7.9 1 
6.8833 1 7.95 3 

6.95 4 7.95 0 
6.9833 2 7.9833 2 
6.9833 0 8.0167 2 
6.9833 0 8.05 2 
6.9833 0 8.0667 1 
6.9833 0 8.1833 7 
7.0167 2 8.2333 3 
7.0167 0 8.4167 11 

Bin   Frequency 
0 18 
1 9 
2 10 
3 5 
4 4 
5 1 
6 0 
7 0 
8 2 
9 1 

10 0 
11 0 
12 1 
13 0 
14 1 
15 0 
16 0 
17 0 
18 0 
19 0 
20 1 

Sum 53 

Estimate parameters from the data 

mean = 
lambda = 

2.3962264 
0.4173228 

Cell 
0 
1 
2 
3 

(4-201 

Expected # 
18.083165 
11.913338 
7.8486045 

5.170725 
9.9715939 

Observed # 
18 

9 
10 

5 
11 

(Oi - Ei)2 
Ei 

0.0003825 
0.7124398 

0.589723 
0.0056369 
0.1060632 

Chi-Square Test Statistic: 1.4142454 

Critical value 63.2 
alpha = 0.1, 50 df 

Conclusion: Do not reject the fit 
at alpha = 0.1 
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6 June, 11:00 -14:00, Gate Departure Times 

decimal gap decimal gap 
hour  time hour   time 

11.017 12.5 2 
11.1 5 12.5 0 

11.133 2 12.5 0 
11.183 3 12.533 2 

11.2 1 12.683 9 
11.233 2 12.817 8 

11.5 16 12.85 2 
11.5 0 12.95 6 

11.567 4 12.95 0 
11.6 2 13.117 10 

11.633 2 13.117 0 
11.633 0 13.167 3 

11.85 13 13.183 1 
11.85 0 13.233 3 

11.917 4 13.267 2 
11.933 1 13.3 2 

11.95 1 13.383 5 
11.967 1 13.5 7 

12 2 13.5 0 
12.05 3 13.633 8 

12.233 11 13.7 4 
12.233 0 13.717 1 
12.233 0 13.733 1 
12.467 14 13.817 5 

13.933 7 
13.95 1 

13.967 1 
13.967 0 

Bin Freq 
0 11 
1 4 
2 14 
3 3 
4 5 
5 2 
6 2 
7 0 
8 4 
9 0 

10 1 
11 2 
12 0 
13 0 
14 1 
15 1 
16 0 
17 1 
18 0 
19 0 
20 0 

Estimate parameters from the data 

sum = 51 

mean =        3.4705882 
lambda =     0.2881356 

Cell Expected # Observed # 
(Oi - Ei)2 

Ei 
0 
1 
2 

(3-20] 

17.400782 
11.463778 
7.5524308 
14.570911 

11 
4 

14 
22 

2.3544924 
4.8594782 
5.5043403 
3.7877776 

Chi-Square Test Statistic: 16.506088 

Critical value 63.2 
alpha = 0.1, 50 df 

Conclusion: Do not reject the fit 
at alpha = 0.1 
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6 June, 15:00 -18:00, Gate Departure Times 

decimal gap decimal gap 
hour  time hour time 

15.017 16.5 2 
15.083 4 16.5 0 
15.117 2 16.667 10 
15.183 4 16.917 15 

15.2 1 16.933 1 
15.25 3 16.95 1 
15.25 0 16.95 0 

15.283 2 16.983 2 
15.283 0 17 1 
15.367 5 17.033 2 

15.5 8 17.05 1 
15.5 0 17.067 1 

15.517 1 17.183 7 
15.533 1 17.35 10 

15.9 22 17.417 4 
15.933 2 17.45 2 
15.967 2 17.5 3 
15.983 1 17.5 0 
15.983 0 17.517 1 

16.05 4 17.6 5 
16.167 7 17.683 5 
16.217 3 17.767 5 
16.283 4 17.767 0 

16.35 4 17.867 6 
16.433 5 17.9 2 

16.45 1 17.917 1 
16.45 0 17.95 2 

16.467 1 

Bin   Frequency 
0              9 
1             11 
2              9 
3              4 
4               6 
5               5 
6                2 
7                1 
8                3 
9                0 

10                0 
11                2 
12                0 
13                0 
14                0 
15                1 
16                0 
17                0 
18                0 
19                0 
20                0 

Estimate parameters from the data 

Sum: 53 

mean -        3.2592593 
lambda =     0.3068182 

Cell Expected # Observed # 
(Oi - Ei)2 

Ei 

0 14.267644 9 1.9448253 
1 10.49791 11 0.0240138 
2 7.7241977 9 0.2107237 
3 5.6833439 4 0.498588 
4 4.1817156 6 0.7906224 
5 3.076841 5 1.2020578 

(6-20; 8.4515583 9 0.0355897 

Chi-Square Test Statistic: 3.4687731 

Critical value 63.2 
alpha = 0.1, 50 df 

Conclusion: Do not reject the fit 
at alpha = 0.1 
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Kolmogorov-Smirnov Goodness of Fit test for the Exponential Dist. 
6 June AM peak period, 0630 - 0900 

T.O. (service) times 
decimal elapsed fiormalized i D+ D- 
hour minute times 

6.55 0 0 0 
6.5833 2 0.013793 1 0.00345 0.0138 

6.6167 4 0.027586 2 0.0069 0.0103 

6.65 6 0.041379 3 0.01034 0.0069 

6.6833 8 0.055172 4 0.01379 0.0034 

6.7333 11 0.075862 5 0.01034 0.0069 

6.7667 13 0.089655 6 0.01379 0.0034 

6.7833 14 0.096552 7 0.02414 -0.0069 

6.8167 16 0.110345 8 0.02759 -0.0103 

6.8333 17 0.117241 9 0.03793 -0.0207 

6.85 18 0.124138 10 0.04828 -0.031 

6.8833 20 0.137931 11 0.05172 -0.0345 

6.9 21 0.144828 12 0.06207 -0.0448 

6.9167 22 0.151724 13 0.07241 -0.0552 

6.95 24 0.165517 14 0.07586 -0.0586 

6.9833 26 0.17931 15 0.07931 -0.0621 

7 27 0.186207 16 0.08966 -0.0724 

7.0167 28 0.193103 17 0.1 -0.0828 

7.05 30 0.206897 18 0.10345 -0.0862 

7.1333 35 0.241379 19 0.08621 -0.069 

7.2333 41 0.282759 20 0.06207 -0.0448 

7.2833 44 0.303448 21 0.05862 -0.0414 

7.3667 49 0.337931 22 0.04138 -0.0241 

7.3833 50 0.344828 23 0.05172 -0.0345 

7.4167 52 0.358621 24 0.05517 -0.0379 

7.45 54 0.372414 25 0.05862 -0.0414 

7.5833 62 0.427586 26 0.02069 -0.0034 

7.6333 65 0.448276 27 0.01724 2E-16 

7.6667 67 0.462069 28 0.02069 -0.0034 

7.7333 71 0.489655 29 0.01034 0.0069 

7.75 72 0.496552 30 0.02069 -0.0034 

7.8 75 0.517241 31 0.01724 0 
7.8167 76 0.524138 32 0.02759 -0.0103 

7.85 78 0.537931 33 0.03103 -0.0138 

7.8833 80 0.551724 34 0.03448 -0.0172 

7.9167 82 0.565517 35 0.03793 -0.0207 

7.9333 83 0.572414 36 0.04828 -0.031 

7.9667 85 0.586207 37 0.05172 -0.0345 

8 87 0.6 38 0.05517 -0.0379 

8.0167 88 0.606897 39 0.06552 -0.0483 

8.0333 89 0.613793 40 0.07586 -0.0586 

8.0667 91 0.627586 41 0.07931 -0.0621 

8.1167 94 0.648276 42 0.07586 -0.0586 

Absence occurrences:  T.O. gap > 3 min 
elapsed normalized 
minute      time 

D+ 

1 35 0.241379 -0.1645 0.24138 
2 41 0.282759 -0.1289 0.20584 

3 49 0.337931 -0.1072 0.18408 

4 62 0.427586 -0.1199 0.19682 
5 65 0.448276 -0.0637 0.14058 

6 71 0.489655 -0.0281 0.10504 

94 0.648276 -0.1098 0.18674 
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8.2167 100 0.689655 43 0.05172 -0.0345 
8.2333 101 0.696552 44 0.06207 -0.0448 
8.2667 103 0.710345 45 0.06552 -0.0483 
8.3167 106 0.731034 46 0.06207 -0.0448 
8.3667 109 0.751724 47 0.05862 -0.0414 

8.4 111 0.765517 48 0.06207 -0.0448 
8.4333 113 0.77931 49 0.06552 -0.0483 
8.4667 115 0.793103 50 0.06897 -0.0517 

8.6 123 0.848276 51 0.03103 -0.0138 
8.7 129 0.889655 52 0.0069 0.0103 

8.8167 136 0.937931  53 -0.0241 0.0414 
8.8333 137 0.944828 54 -0.0138 0.031 

8.85 138 0.951724 55 -0.0034 0.0207 
8.8833 140 0.965517 56 2.2E-16 0.0172 

8.95 144 0.993103 57 -0.0103 0.0276 
8.9667 145 1 58 -2E-16 0.0172 

maxD+ maxD- 
0.10345 0.0414 

8 100 0.689655 -0.0743 0.15119 

9 109 0.751724 -0.0594 0.13634 

10 123 0.848276 -0.079 0.15597 
11 129 0.889655 -0.0435 0.12042 
12 136 0.937931 -0.0149 0.09178 

13 144 0.993103 0.0069 0.07003 
maxD+ maxD- 

0.0069 0.24138 

Dcrit = 1.22/sqrt(58) =   0.16019 
alpha = 0.1, 58 degrees of freedom 

Dcrit = 0.325 
alpha = 0.1,13 degrees of freedom 

Conclusion:     Do not reject an exponential fit      Concl:       Do not reject an exp fit 
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Kolmogorov-Smirnov Goodness of Fit test for the Exponential Dist. 
6 June PM peak period, 1500 -1800 

T.O. (service) times 
decimal elapsed normalized i D+ D- 

hour minute time 
15 0 0 0 0 

15.083 5 0.027933 1 -0.0083 0.0279 
15.117 7 0.039106 2 0.00011 0.0195 
15.167 10 0.055866 3 0.00296 0.0167 

15.2 12 0.067039 4 0.01139 0.0082 
15.267 16 0.089385 5 0.00865 0.011 

15.35 21 0.117318 6 0.00033 0.0193 
15.4 24 0.134078 7 0.00318 0.0164 

15.467 28 0.156425 8 0.00044 0.0192 
15.483 29 0.162011 9 0.01446 0.0051 

15.5 30 0.167598 10 0.02848 -0.0089 
15.533 32 0.178771 11 0.03692 -0.0173 

15.55 33 0.184358 12 0.05094 -0.0313 
15.55 33 0.184358 13 0.07054 -0.0509 
15.65 39 0.217877 14 0.05663 -0.037 

15.733 44 0.24581 15 0.04831 -0.0287 
15.767 46 0.256983 16 0.05674 -0.0371 

15.8 48 0.268156 17 0.06518 -0.0456 
15.817 49 0.273743 18 0.0792 -0.0596 

15.85 51 0.284916 19 0.08763 -0.068 
16.217 73 0.407821 20 -0.0157 0.0353 
16.333 80 0.446927 21 -0.0352 0.0548 
16.367 82 0.458101 22 -0.0267 0.0463 
16.383 83 0.463687 23 -0.0127 0.0323 

16.4 84 0.469274 24 0.00131 0.0183 
16.417 85 0.47486 25 0.01534 0.0043 
16.533 92 0.513966 26 -0.0042 0.0238 

16.55 93 0.519553 27 0.00986 0.0097 
16.583 95 0.530726 28 0.01829 0.0013 
16.667 100 0.558659 29 0.00997 0.0096 

16.8 108 0.603352 30 -0.0151 0.0347 
16.85 111 0.620112 31 -0.0123 0.0319 

16.883 113 0.631285 32 -0.0038 0.0234 
16.9 114 0.636872 33 0.01019 0.0094 

16.933 116 0.648045 34 0.01862 0.001 
17.017 121 0.675978 35 0.0103 0.0093 
17.133 128 0.715084 36 -0.0092 0.0288 
17.167 130 0.726257 37 -0.0008 0.0204 
17.183 131 0.731844 38 0.01325 0.0064 
17.217 133 0.743017 39 0.02169 -0.0021 
17.433 146 0.815642 40 -0.0313 0.0509 

Absence occurrences:  T.O. gap > 3 min 
i elapsed normalized 

minute      time 
D+ D- 

1 
2 
3 
4 

5 
6 

7 
8 

10 
11 
12 

13 
14 

15 
16 

12 0.067039 
16 0.089385 
21 0.117318 
24 0.134078 

116 
121 

133 
146 

-0.0194 0.06704 
0.00585 0.04177 
0.02554 0.02208 
0.0564 -0.0088 

33 0.184358 0.05374 
39 0.217877 0.06784 

-0.0061 
-0.0202 

51    0.284916   0.04842 
73   0.407821    -0.0269 

-0.0008 
0.07449 

85  0.47486 -0.0463 0.09391 

95 0.530726 
100 0.558659 
108 0.603352 

0.648045 
0.675978 

0.743017 
0.815642 

-0.0545 0.10215 
-0.0348 0.08247 
-0.0319 0.07954 

-0.029 0.07662 
-0.0093 0.05693 

-0.0287 0.07635 
-0.0537 0.10136 
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17.483 149 0.832402 41 -0.0285 0.0481 

17.517 151 0.843575 42 -0.02 0.0397 

17.567 154 0.860335 43 -0.0172 0.0368 

17.583 155 0.865922 44 -0.0032 0.0228 

17.617 157 0.877095 45 0.00526 0.0143 

17.633 158 0.882682 46 0.01928 0.0003 

17.667 160 0.893855 47 0.02771 -0.0081 

17.75 165 0.921788 48 0.01939 0.0002 

17.8 168 0.938547 49 0.02224 -0.0026 

17.867 172 0.960894 50 0.0195 0.0001 

17.983 179 1 51 -2E-16 0.0196 

17 151 0.843575 -0.0341 0.08167 

18 160 0.893855 -0.0367 0.08433 

19 165 0.921788 -0.017 0.06464 

20 168 0.938547 0.01383 0.03379 

21 172 0.960894 0.03911 0.00851 

0.08763    0.0548 0.06784  0.10215 

Dcrit = 1.22/sqrt(51) =   0.17083 
alpha = 0.1, 51 degrees of freedom 

Dcrit = 0.325 
alpha = 0.1,13 degrees of freedom 

Conclusion:     Do not reject an exponential fit      Concl:        Do not reject an exp. fit 
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Appendix 3: Justification for Numerical Solution Methods 

A3.1 Uniformization 

The matrix solution of the Kolmogorov Backward Equations can be determined 

through the use of uniformization. When v represents the uniformization rate and t is the 

length of the time period, the solution to the elements of the transition matrix, P(t), is: 

Py(t)«   Y,   PijV n   -vt (v-t) 

n = 0 (A3-1) 

The first part of the summation term, Py", represents the conditional probability of 

transitioning from state i to state j, given that n transitions are made. The second term 

represents the probability that n transitions occur during the time period. A major 

limitation of this form of the solution is the fact that many of the terms in the infinite sum 

must be evaluated in order to achieve a reasonable approximation (16:290). This process 

can turn out to be very computationally intensive. Another challenge is that the single step 

transition probabilities, Py, must be determined. The two approximation methods 

presented below address these problems. Both of these methods are from Sheldon Ross. 

(16:291) 

A3.2 Approximation Method Number One 

For the first approximation method, the value of the uniformization parameter v is 

selected so that v = n/t. By doing so, equation (A3-1) represents the expected value of the 

matrix product PN, where N is Poisson distributed random variable with mean (vt). 

However, if N is Poisson with mean (vt), then it has a standard deviation equal to (vt)   . 

When n is chosen to be large, then the mean of N (vt = n) is also large and the standard 
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deviation of N will be small in comparison to its mean. Thus, when n is large and equal to 

vt, the right side of equation (A3-1) is reasonably approximated by P°. 

It is now necessary to determine an estimate for P°. The individual single step 

transition probabilities which are the elements of P are the following: 

1   Vi      *• 

p.. = v 
1J      vi 

— Pii       j*i 
v   1J (A3-2) 

Thus, when the rate matrix R is defined such that the elements Ry (i*j) are equal to the 

transition rates from state i to state j, and the diagonal elements, Ru, are equal to the 

negative of the total rate at which transitions occur out of state i, then the matrix with the 

individual elements Py is equal to: 

P-I+- 
v (A3-3) 

When v = n/t: 

P*I-t-R- 
n (A3-4) 

Thus, the n step transition probabilities are found in the n* power of this matrix. Finally, 

the expected value of PN is equal to the n* power of (A3-4) as n goes to infinity. 

P(t)«   Um    [ I -H R.—} 
n-* - \ n/ (A3-5) 

A3.3 Approximation Method Number Two 

A random variable Y is defined to be exponentially distributed with rate X. Then 

the conditional probability of transitioning to state j, at time Y, given the process started in 

state i, is expressed as follows: 

P. .«P( X( Y)«j, Given, X(0)-i) (A36) 
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Now the variable Tiis defined as the time at which the first transition occurs after 

time 0. By conditioning on where the random variable Y occurs with respect to T, the 

above transition probability may be rewritten as follows: 

P. .-P(X( Y)-j,Given,X(0)«i,and,T.<Y)-P(T<Y) + P(X(Y)-j,Given,X(0)«i,and>T.>Y)-P(T.>Y)  (A3?) 

But when T; is > Y, the probability of transitioning from i to j by time Y is zero 

unless i is equal to j. Therefore, the following variable is defined to replace the second 

conditional probability expression in (A3-7) above: 

0 i*j 
8. = 

1 i-j (A3-8) 

The probabilities that Y less than or equal to T, and that Y is greater than Tt are 

the following: 

P(T<YV——       P(T.>Y)«  
X 

V '   ' V* V '       v.+* (A3-9) 

Also the following identity may be used to replace the first conditional probability 

expression in (A3-7): 

P(X(Y)*j,Given,X(0)=i,and,T.<Y)s^]   P. fcPk . 

(k*i) (A3-10) 

Substituting (A3-8),(A3-9), and (A3-10) into equation (A3-7) yields: 

X  \ 
>.j 2J   

Pi,kPk,j 
L(k*i) 

— +M i 
(A3-11) 

When the variable i is equal to j, 6i, is equal to 1. Also, q* = PucV;. Thus (A3-11) 

becomes: 

Z <Ji,kPk,j 
L(k*i) 

(X+v0-pU-fS  *iAj 
.(k*i) 

i  W  x 

■X 

(A3-12) 

(A3-13) 
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[     X    ,,J    X 
(k*i) (A3-14) 

When i is not equal to j, then 5i, is equal to zero and (A3-11) is: 

p. .< 
v. + A, 

L(k^i) 

(x+vi)-pij-[E ^.^j 
(k*i) 

«0 

I     X/   ,,J    X Z qi.kpk.j 
L(k*0 

(A3-15) 

(A3-16) 

(A3-17) 

Since the rate matrix R is defined such that: 

R .   = 
q. .        i*j 

-v. (A3-18) 

It then follows that equations (A3-14) and (A3-17) are the equivalent expressions 

for the individual elements of the following matrix product: 

I--1-P-I 
(A3-19) 

Rearranging terms yields: 

P* i R 

XI (A3-20) 

Finally, if the random variable Y is defined such that Y = Yi+Y2...+Y„, where Y; 

are all independent identically distributed exponential random variables, then: 

P. .      =  P(x(Y1 + Y2..Yn)SSj,Given,X(0)*i)    =     (P"). . (A3_21) 

If the parameter X is equal to n/t in expression (A3-20), then the equation for the 

second approximation results: 

-l 

'.j 
I- Rt 

(A3-22) 
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Appendix 4: FORTRAN Code and User's Guide 

This appendix contains the computer code for the four programs written to 

execute the models. The first two programs execute the Erlang model with the two 

different approximation methods. The second two programs execute the Absence model 

for the two methods. 

A4.1 Erlang Models 

The programs for the M/Ek/1 model are called "mekl.f' and "meklinv.f'. The 

first program uses approximation method one which does not require matrix inversions. 

The second program uses the matrix inversion approximation method. This program calls 

an IMSL double precision matrix inversion subroutine called "DLINRG" (8:1130). Both 

of these programs query the user for interactive inputs of model parameters. An example 

of this computer interaction is shown below. 

Input an integer for the accuracy factor. 
10 
Input the size of the time step in hours. 
1 
Input the number of time periods. 
6 
Input the service rate (# of takeoffs per TIME PERIOD). 
23 
Input the number of stages of service. 
2 
Input an integer for the maximum # of aircraft in the system. 
25 
Input  6 periods of demand rate values. 
25 
23 
23 
20 
14 
19 
Input the average time from pushback to queue entry. 
10 
Input the initial average delays in minutes (>= 0). 
0 
The initial  state used has     0 aircraft  in the system. 

Figure A4.1 Erlang Model Computer Interaction 
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The accuracy factor is the number of matrix multiplications performed. If 6 is 

used, then 6 matrix multiplications are used to generate the 26 (32nd) power of the matrix. 

Due to the characteristics of the rate matrix, it is possible for the "mekl.f' (no matrix 

inversion) program to abort if the accuracy factor is not chosen large enough. If this 

occurs, it is usually possible to perform a successful execution by increasing the magnitude 

of this factor. However, this should be done within reason, since the computation time 

increases linearly with the size of the accuracy factor. 

The number of time periods is self explanatory. 

The size of the time step should correspond to the interval for which the data was 

collected. If the interval was 30 minutes, the input would be 0.5. 

The service rate is the greatest average number of take-offs that can be expected 

for the given airport operating conditions. This value should be input for the input time 

period length. The computer program will convert the input to an hourly rate, which is 

required for the rate matrix. For example, if it is expected that 10 take-offs may be 

performed in a 30 minute period, then the number 10 should be input for the service rate. 

The program will automatically convert this to an effective hourly rate of 20. 

The number of stages of service should be determined by the closest fitting 

Erlang-k probability distribution. If the service time is assumed to be exponentially 

distributed, then the parameter would be 1. If the service time were actually more 

Gaussian in appearance, then a larger number of stages would be used. 

The maximum number of aircraft in the system should be chosen to be 2 to 2.5 

times larger than the longest expected queue length. This may be determined by executing 
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the model with an estimated value. If the value that was input did not meet this 

requirement, the model should be run again with a new value that does. 

The next parameter requested is the number of aircraft which demand service per 

time period. These inputs are the number of aircraft which complete pushback per time 

period. If using the model for prediction, the number of OAG gate departures per time 

period will be used instead. Due to the requirements of the rate matrix, the computer 

programs will automatically convert the input values to the corresponding hourly rate. 

Finally, the Erlang model program requests the initial average delay. The model 

will convert this amount to an appropriate queue length in order to determine the state 

probability vector for the model starting condition. 

A4.2 Absences Models 

The two programs which execute the Absence model are called "mekabs.f' and 

"mekabsinv.f'. The first program does not require matrix inversions while the second 

does. As with the Erlang inversion model, "mekabsinv.f calls an IMSL inversion 

subroutine. The requests for input are the same as those for the Erlang model programs 

up through the input of the demand rate values. An example of the additional computer 

interaction for the absence models is shown in Figure A4.2. 

The next data input for the absence models after the demand rate values are the 

number of stages of service and absence return. These values must be input one per line. 

When using the absence model the service rate should have a lower variance and hence a 

higher number of stages of service than the Erlang models did. The absence return 

process will likely also have a small variance and thus require a large number of stages. 
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Input the number of stages of service and absence return. 
6 
9 
Input   6 probabilities of an absence. 
0.2 
0.15 
0.18 
0.05 
0.0 
0.31 
Input the absence return rate. 
15 
Input the initial number of aircraft in the system. 
0 

Figure A4.2 Absence Model Computer Interaction 

The probability of an absence is the probability that the server (the runway) will 

not be available to allow another aircraft in the departure queue to take off after the 

present aircraft completes its take-off. 

The absence return rate is the inverse of the average amount of time which the 

runway is unavailable during an absence occurrence. This must be computed using hours 

as the time unit. For example, if the average absence is 0.1 hours (6 minutes), then the 

absence return rate would be 1/(0.1) = 10. 

Finally, these programs request the observed number of aircraft in the system as 

the starting condition. This amount is the number of aircraft in the queue, plus any aircraft 

taking off. 

A4.3 Model Output 

All programs generate three different output files. These files include the queue 

performance measure estimates, the matrix of state probability vectors, and the rate 

matrix. 
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Program Queue Performance     Probability Vectors     Rate Matrix 

mekl.f 
meklinv.f 
mekabs.f 
mekabsinv.f 

perf.out 
perfinv.out 
perfabs.out 
perfabsinv.out 

prob.out 
probinv.out 
probabs.out 
probabsinv.out 

rate.out 
rateinv.out 
rateabs.out 
rateabsinv.out 

Table A3.1 Output File Names 

The queue performance output file starts with an echo check of the important 

input values. It then lists the expected queue length and queue length standard deviation 

for the end of each time period. Next it lists the expected waiting time and the expected 

roll-out time. An example of a typical queue performance output file is shown below. 

M/Ek/l MODEL with matrix inversions 

Time period length is: 
1.0 

Accuracy level factor is: 
10 

Maximum system size is: 
25 

Number of stages of service is: 
2 

The HOURLY service rate used was: 
23.0 

The average taxi-out time used was: 
10.0 

The HOURLY demand rates used were: 
25.0 23.0 23.0 20.0 14.0 19.0 

The queue length ave and standard deviation are: 

4.9  6.4  7.6  6.3  2.4  2.9 
4.1  5.5  6.2  6.1  4.0  3.8 

The ave delay and roll-out times are: 

14.5 18.5 21.6 18.3  7.8  9.1 

24.5 28.5 31.6 28.3 17.8 19.1 

Figure A4.3 Sample Output File - "perfinv.out" 

The following pages of this appendix contains the FORTRAN computer code. 

The programs are listed in order: mekl.f, meklinv.f, mekabs.f, and mekabsinv.f. 
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****************** mekl.f ******************* 
* M(t)/Ek/1 Queue performance program, w/o inversions 
* Written by Joseph Hebert, Mar 95, Air Force Inst of Tech 
* for masters thesis: 
* Analysis and Modeling of an Airport Departure Queue 
******************************************************************* 

PARAMETER (LDA= 5 0 0,LDAINV= 500,PER=100) 
DOUBLE PRECISION PMATRX(LDA,LDA), POUT(LDA,LDA) 
DOUBLE PRECISION SUM, PROD 
REAL IMATRX(LDA,LDA), PSTAGE(PER,LDA), RATE(LDA,LDA) 
REAL RSERVE, T, CHECK, IDELAY, NUM, TAXOUT 
REAL RARRIV(PER), NUMQ(PER), TIMQ(PER) 
REAL ENMQ2(PER), SDNUMQ(PER), ROLLTM(PER) 
INTEGER R, I, J, K, L, M, N, IHOUR, MAXNUM, ACC 
INTEGER  NSTAGE, NUMPER, SNUM 

DATA PSTAGE/50000*0.0/ 
OPEN (UNIT=10,FILE="rate.out") 
OPEN (UNIT=11,FILE='prob.out•) 
OPEN (UNIT=12,FILE='perf.out') 

* read in queue parameters 

PRINT*, 'Input an integer for the accuracy factor." 
READ*, ACC 
PRINT*, 'Input the size of the time step in hours.' 
READ*, T 
PRINT*, 'Input the number of time periods.' 
READ*, NUMPER 
PRINT*, 'Input the service rate (# of takeoffs per TIME PERIOD).' 
READ*, RSERVE 
PRINT*, 'Input the number of stages of service.' 
READ*, NSTAGE 
PRINT*, 'Input an integer for the maximum # of aircraft in the system' 
READ*, MAXNUM 
PRINT*, 'Input ',NUMPER,' periods of demand rate values.' 
READ*,   (RARRIV(IHOUR), IHOUR = 1, NUMPER) 
PRINT*, "Input the average time from pushback to queue entry.' 
READ*, TAXOUT 
PRINT*, 'Input the initial average delays in minutes (>= 0).' 
READ*, IDELAY 

* define the matrix dimensions and the initial condition probability vector 

NUM = RSERVE*IDELAY/60 
SNUM = NINT(NUM) 
PRINT*,'The initial state used has',SNUM,' aircraft in the system." 
N = 2**ACC 
R = MAXNUM*NSTAGE+1 
PSTAGE(1,NSTAGE*SNUM+1) =1.0 

* transform entry and service rates into hourly rates 

DO 5 I = 1, NUMPER 
RARRIV(I) = RARRIV(I)/T 

5     CONTINUE 
RSERVE = RSERVE/T 

* create the r x r identity matrix 

DO 20 I = 1, R 
DO 10 J = 1, R 

IMATRX(I,J) = 0.0 
10    CONTINUE 
20    CONTINUE 

DO 3 0 I = 1, R 
IMATRX(I,I) =1.0 

3 0    CONTINUE 
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* compute rate matrices and perform numerical approximations 

DO 150 IHOUR = 1, NUMPER 
CALL RMATRX(IHOUR,RSERVE,RARRIV,NSTAGE,R,RATE,PER,LDA) 
DO 60 I = 1, R 

DO 50 J = 1, R 
PMATRX(I,J) = IMATRX(I,J)+(T/N)*RATE(I,J) 

5 0        CONTINUE 
60      CONTINUE 

* check the rate matrix for errors 

DO 66 I = 1, R 
CHECK =0.0 
DO 64 J = 1, R 

CHECK = CHECK + RATE(I,J) 
64      CONTINUE 

IF (CHECK.GT.0.001.OR.CHECK.LT.-0.001) THEN 
PRINT*, 'There is an error in row ',!,'   of the rate matrix' 
PRINT*, 'for hour number ',IHOUR,'.  Its row total is ',CHECK 
PRINT*, 'This program has been aborted." 
GO TO 200 

END IF 
66    CONTINUE 

* matrix multiplication routine 

DO 12 0 M = 1, ACC 
DO 90 I = 1, R 

DO 80 J = 1, R 
PROD =0.0 
SUM =0.0 

DO 70 L = 1, R 
PROD = PMATRX(I,L)*PMATRX(L,J) 
SUM = PROD + SUM 

70 CONTINUE 
POUT(I,J) = SUM 

80       CONTINUE 
9 0    CONTINUE 

DO 110 I = 1, R 
DO 100 J = 1, R 

PMATRX(I,J) = POUT(I,J) 
100     CONTINUE 
110   CONTINUE 
12 0   CONTINUE 

* check the transition matrix for probabilistic consistency 

DO 126 I = 1, R 
CHECK =0.0 
DO 124 J = 1, R 

CHECK = CHECK + PMATRX(I,J) 
124     CONTINUE 

IF (CHECK.GT.l.001.OR.CHECK.LT.0.999) THEN 
PRINT*, 'There is an error in row ',1,' of the trans matrix" 
PRINT*, 'for hour number ',IHOUR,'Its row total is ",CHECK 
PRINT*, 'This program has been aborted.' 
GO TO 200 

END IF 
12 6   CONTINUE 

* compute next probability vector 

DO 140 I = 1, R 
SUM =0.0 
DO 130 J = 1, R 

PROD = PSTAGE(IHOUR,J)*PMATRX(J,I) 
SUM = PROD + SUM 
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13 0     CONTINUE 
PSTAGE(IHOUR+l,I) = SUM 

140   CONTINUE 
150   CONTINUE 

* test printout of the prob matrix 

WRITE (11, '(A27)') ('mekl.f,The prob matrix is:1) 
WRITE (11,•(Al)') 
DO 154 I = 1, NUMPER+1 
WRITE (11,'(1X,100F7.4)') (PSTAGE(I,J),J = 1, R) 
SUM =0.0 
DO 153 J = 1, R 

SUM = SUM + PSTAGE(I,J) 
153 CONTINUE 

WRITE (11, ' (A,1F5.1) ') 'Row sum: ',SUM 
WRITE (11,'(Al)') 

154 CONTINUE 

* calculate queue performance measures 

DO 180 1=1, NUMPER 
NUMQ(I) =0.0 
DO 17 0 J = 1, MAXNUM 

DO 160 K = 1, NSTAGE 
NUMQ(I) = NUMQ(I) + (J-l)*PSTAGE(1+1,(J-l)*NSTAGE+K+1) 
ENMQ2(I) = ENMQ21I) + ((J-l)**2)*PSTAGE(1+1,(J-l)*NSTAGE+K+1) 

160       CONTINUE 
170     CONTINUE 

TIMQ(I) =0.0 
DO 176 J = 1, R 

TIMQ(I) = TIMQ(I)+60*PSTAGE(I+1,J)*(J-1)/(NSTAGE*RSERVE) 
176     CONTINUE 

SDNUMQ(I) = SQRT(ENMQ2(I) - NUMQ(I)**2) 
ROLLTM(I) = TAXOUT + TIMQ(I) 

180   CONTINUE 

* printout of the queue performance measures 

(A41)')('M/Ek/1 MODEL without inversions') 
(A60)') 
(A40)') ('The time period length (hours) used was:') 
(1X,1F5.1)')(T) 
(A25)')('Accuracy level factor is:') 
(IX,113)')(ACC) 
(A23)')('Maximum system size is:') 
(IX,113)')(MAXNUM) 
(A31)')('Number of stages of service is:') 
(IX,113)')(NSTAGE) 
(A33)')('The HOURLY service rate used was:') 
(1X,1F5.1)')(RSERVE) 
(A35)')('The average taxi-out time used was:') 
(1X,1F5.1)')(TAXOUT) 
(A34)')('The HOURLY demand rates used were:') 
(1X,100F5.1)')(RARRIV(I), 1=1, NUMPER) 
(A60)') 
(A48)')('The queue length ave and standard deviation 

(A60)') 
(1X,100F5.1) ' ) (NUMQ(I), 1 = 1, NUMPER) 
(1X,100F5.1)')(SDNUMQ(I), 1=1, NUMPER) 
(A60)') 
(A37)')('The ave delay and roll-out times are:') 
(A60)') 
(1X,100F5.1)')(TIMQ(I), 1=1, NUMPER) 
(A60)') 
(1X,100F5.1)')(ROLLTM(I), 1=1, NUMPER) 

WRITE 12, ' 
WRITE 12, ' 
WRITE 12, ' 
WRITE 12, ' 
WRITE 12,' 
WRITE 12,' 
WRITE 12,' 
WRITE 12, ' 
WRITE 12,' 
WRITE 12, ' 
WRITE 12,' 
WRITE 12, ' 
WRITE 12,' 
WRITE 12,' 
WRITE 12, 
WRITE 12, 
WRITE 12, • 
WRITE 12, 

C are:') 
WRITE 12, 
WRITE 12, 
WRITE 12, 
WRITE 12, 
WRITE 12, 
WRITE 12, 
WRITE 12, 
WRITE 12, 
WRITE 12, 

*test printout of the last rate matrix 
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200   WRITE (10,'(A32)') ('mekl.f, The last rate matrix is:') 
WRITE (10,"(Al)') 
DO 210 I = 1, R 
WRITE (10,'(1X,700F7.2)') (RATE(I,J),J = 1, R) 
WRITE (10,'(Al)') 

210   CONTINUE 

END 

* subroutine to create the rate matrix 

SUBROUTINE RMATRX(IHOUR,RSERVE,RARRIV,NSTAGE,R,RATE,PER,LDA) 
REAL RSERVE 
REAL RARRIV(PER), RATE(LDA,LDA) 
INTEGER R, NSTAGE, I, J, IHOUR 

DO 20 I = 1, R 
DO 10 J = 1, R 

RATE(I,J) = 0.0 
10    CONTINUE 
2 0    CONTINUE 

DO 30 I = 1, R-NSTAGE 
RATE(I,I) = -NSTAGE*RSERVE-RARRIV(IHOUR) 
RATE(I,I+NSTAGE) = RARRIV(IHOUR) 

3 0    CONTINUE 
DO 40 I = 2, R 

RATE(1,1-1) = NSTAGE*RSERVE 
40    CONTINUE 

RATE(1,1) = -RARRIV(IHOUR) 
DO 50 I = 1, NSTAGE 

RATE(R-I+1,R-I+1) = -NSTAGE*RSERVE 
50    CONTINUE 

RETURN 
END 
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*********************        meklinv.f ****************** 
* M(t)/Ek/1 Queue performance indicator program (with inversions) 
* Written by Joseph Hebert, Mar 95, Air Force Inst of Tech 
* for masters thesis: 
* Analysis and Modeling of an Airport Departure Queue 
******************************************************************* 

PARAMETER (LDA= 500,LDAINV= 500,PER=100) 
DOUBLE PRECISION POUT(LDA,LDA),PMATRX(LDA,LDA) 
DOUBLE PRECISION SUM, PROD, PINV(LDAINV,LDAINV) 
REAL IMATRX(LDA,LDA), PSTAGE(PER,LDA), RATE(LDA,LDA) 
REAL RSERVE, T, CHECK, IDELAY, NUM, TAXOUT 
REAL RARRIV(PER), NUMQ(PER), TIMQ(PER) 
REAL ENMQ2(PER), SDNUMQ(PER), ROLLTM(PER) 
INTEGER R, I, J, K, L, M, N, IHOUR, MAXNUM, ACC 
INTEGER NSTAGE, NUMPER, SNUM 

COMMON /WORKSP/  RWKSP 
REAL RWKSP(96740) 
CALL IWKIN(96740) 

DATA PSTAGE/50000*0.0/ 
OPEN (UNIT = 10, FILE = 'rateinv.out') 
OPEN (UNIT = 11, FILE = 'probinv.out') 
OPEN (UNIT = 12, FILE = 'perfinv.out') 

* read in queue parameters 

PRINT*, 'Input an integer for the accuracy factor.' 
READ*, ACC 
PRINT*, 'Input the size of the time step in hours.' 
READ*, T 
PRINT*, 'Input the number of time periods.' 
READ*, NUMPER 
PRINT*, "Input the service rate (# of takeoffs per TIME PERIOD).' 
READ*, RSERVE 
PRINT*, 'Input the number of stages of service.' 
READ*, NSTAGE 
PRINT*, 'Input an integer for the maximum # of aircraft in the system' 
READ*, MAXNUM 
PRINT*, 'Input ',NUMPER,' periods of demand rate values.' 
READ*, (RARRIV(IHOUR), IHOUR = 1, NUMPER) 
PRINT*, 'Input the average time from pushback to queue entry.' 
READ*, TAXOUT 
PRINT*, 'Input the initial average delays in minutes (>= 0).' 
READ*, IDELAY 

*define the matrix dimensions and the initial condition probability vector 

NUM = RSERVE*IDELAY/60 
SNUM = NINT(NUM) 
PRINT*,'The initial state used has',SNUM,' aircraft in the system." 
N = 2**ACC 
R = MAXNUM*NSTAGE+1 
PSTAGE(1,NSTAGE*SNUM+1) =1.0 

* transform entry and service rates into hourly rates 

DO 5 I = 1, NUMPER 
RARRIV(I) = RARRIV(I)/T 

5     CONTINUE 
RSERVE = RSERVE/T 

* create the r x r identity matrix 

DO 20 I = 1, R 
DO 10 J = 1, R 

IMATRX(I,J) = 0.0 
10    CONTINUE 
2 0    CONTINUE 
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DO 3 0 I = 1, R 
IMATRX(I,I) =1.0 

3 0    CONTINUE 

* compute rate matrices and perform numerical approximations 

DO 15 0 IHOUR = 1, NUMPER 
CALL RMATRX(IHOUR,RSERVE,RARRIV,NSTAGE,R,RATE,PER,LDA) 
DO 60 I = 1, R 

DO 50 J = 1, R 
PMATRX(I,J) = IMATRX(I,J)-(T/N)*RATE(I,J) 

50        CONTINUE 
60      CONTINUE 

* check the rate matrix for errors 

DO 66 I = 1, R 
CHECK =0.0 
DO 64 J = 1, R 

CHECK = CHECK + RATE(I,J) 
64      CONTINUE 

IF (CHECK.GT.0.001.OR.CHECK.LT.-0.001) THEN 
PRINT*, "There is an error in row ',1,' of the rate matrix" 
PRINT*, 'for hour number ',IHOUR,".  Its row total is ',CHECK 
PRINT*, "This program has been aborted.' 
GO TO 200 

END IF 
66    CONTINUE 

* call IMSL matrix inversion subroutine 

CALL DLINRG(R,PMATRX,LDA,PINV,LDAINV) 

* matrix multiplication routine 

DO 120 M = 1, ACC 
DO 90 I = 1, R 

DO 80 J = 1, R 
PROD =0.0 
SUM =0.0 

DO 70 L = 1, R 
PROD = PINV(I,L)*PINV(L,J) 
SUM = PROD + SUM 

7 0 CONTINUE 
POUT(I,J) = SUM 

80       CONTINUE 
90    CONTINUE 

DO 110 I = 1, R 
DO 100 J = 1, R 

PINV(I,J) = POUT(I,J) 
100     CONTINUE 
110   CONTINUE 
12 0   CONTINUE 

* check the transition matrix for probabilistic consistency 

DO 126 I = 1, R 
CHECK =0.0 
DO 124 J = 1, R 

CHECK = CHECK + PINV(I,J) 
12 4     CONTINUE 

IF (CHECK.GT.1.001.OR.CHECK.LT.0.999) THEN 
PRINT*, 'There is an error in row ',1,' of the trans matrix" 
PRINT*, 'for hour number ',IHOUR,'Its row total is ',CHECK 
PRINT*, 'This program has been aborted.' 
GO TO 200 

ENDIF 
12 6   CONTINUE 
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* compute next probability vector 

130 

140 
150 

DO 140 I = 1, R 
SUM =0.0 
DO 13 0 J = 1, R 

PROD = PSTAGE(IHOUR,J)*PINV(J,I) 
SUM = PROD + SUM 

CONTINUE 
PSTAGE(IHOUR+l,I) = SUM 

CONTINUE 
CONTINUE 

* test printout of the prob matrix 

WRITE (11, '(A27)') ('meklinv.f, The prob matrix is:') 
WRITE (11,"(Al)•) 
DO 154 1=1, NUMPER+1 
WRITE (11,'(1X,100F7.4)') (PSTAGE(I,J),J = 1, R) 
SUM =0.0 
DO 153 J = 1, R 

SUM = SUM + PSTAGE(I,J) 
153 CONTINUE 

WRITE (11,'(A,1F7.2)') 'Row sum: ',SUM 
WRITE (11,'(Al)') 

154 CONTINUE 

* calculate queue performance measures 

DO 180 I = 1, NUMPER 
NUMQ(I) =0.0 
DO 170 J = 1, MAXNUM 

DO 160 K = 1, NSTAGE 
NUMQ(I) = NUMQ(I) + (J-l)*PSTAGE(1+1,(J-l)*NSTAGE+K+1) 
ENMQ2(I) =ENMQ2(I) + ((J-l)**2)»PSTAGE(1+1,(J-l)*NSTAGE+K+1) 

16 0       CONTINUE 
170     CONTINUE 

TIMQ(I) =0.0 
DO 176 J = 1, R 

TIMQ(I) = TIMQ(I) + 60*PSTAGE(I+1,J)*(J-1)/(NSTAGE*RSERVE) 
176     CONTINUE 

SDNUMQ(I) = SQRT(ENMQ2(I) - NUMQ(I)**2) 
ROLLTM(I) = TAXOUT + TIMQ(I) 

180   CONTINUE 

* printout of the queue performance measures 

(A45)')('M/Ek/1 MODEL with matrix inversions') 
(A60)') 
(A22)')('Time period length is:') 
(1X,1F5.1)')(T) 
(A25)')('Accuracy level factor is:') 
(IX,113)')(ACC) 
(A23)')('Maximum system size is:') 
(IX,113)')(MAXNUM) 
(A31)')('Number of stages of service is:') 
(IX,113)')(NSTAGE) 
(A33)')('The HOURLY service rate used was:') 
(1X,1F5.1)')(RSERVE) 
(A35)')('The average taxi-out time used was:') 
(1X,1F5.1)')(TAXOUT) 
(A34)')('The HOURLY demand rates used were:') 
(1X,100F5.1)')(RARRIV(I), 1=1, NUMPER) 
(Al) ') 
(A48)')('The queue length ave and standard deviation 

(A60)') 
(1X,100F5.1)')(NUMQ(I), 1=1, NUMPER) 
(1X,100F5.1)')(SDNUMQ(I), 1=1, NUMPER) 

WRITE 12,' 
WRITE 12, ' 
WRITE 12,' 
WRITE 12, ' 
WRITE 12, ' 
WRITE 12, ' 
WRITE 12, ' 
WRITE 12, ' 
WRITE 12, ' 
WRITE 12, ' 
WRITE 12, ' 
WRITE 12,' 
WRITE 12,' 
WRITE 12, ' 
WRITE 12, 
WRITE 12, 
WRITE 12, 
WRITE 12, 

C are:') 
WRITE 12, 
WRITE 12, 
WRITE 12, 
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WRITE (12,'(A60)') 
WRITE (12,'(A37)')("The ave delay and roll-out times are:') 
WRITE (12,'(A60)•) 
WRITE (12,'(1X,100F5.1)')(TIMQ(I), 1=1, NUMPER) 
WRITE (12,•(A60)•) 
WRITE (12,'(1X,100F5.1)")(ROLLTM(I), 1=1, NUMPER) 

*test printout of the last rate matrix 

200   WRITE (10,'(A32)') ('meklinv.f, The last rate matrix is:') 
WRITE (10,•(Al)') 
DO 210 I = 1, R 
WRITE (10,'(1X,700F7.2)') (RATE(I,J),J = 1, R) 
WRITE (10,'(Al)') 

210   CONTINUE 

END 

* subroutine to create the rate matrix 

SUBROUTINE RMATRX(IHOUR,RSERVE,RARRIV,NSTAGE,R,RATE,PER,LDA) 
REAL RSERVE 
REAL RARRIV(PER), RATE(LDA,LDA) 
INTEGER R, NSTAGE, I, J, IHOUR 

DO 20 I = 1, R 
DO 10 J = 1, R 

RATE(I,J) = 0.0 
10    CONTINUE 
2 0    CONTINUE 

DO 30 I = 1, R-NSTAGE 
RATE(I,I) = -NSTAGE*RSERVE-RARRIV(IHOUR) 
RATE(I,I+NSTAGE) = RARRIV(IHOUR) 

3 0    CONTINUE 
DO 40 I = 2, R 

RATE(1,1-1) = NSTAGE*RSERVE 
40    CONTINUE 

RATE(1,1) = -RARRIV(IHOUR) 
DO B0 I = 1, NSTAGE 

RATE(R-I+1,R-I+1) = -NSTAGE*RSERVE 
50    CONTINUE 

RETURN 
END 
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********************* mekabs.f ********************** 
* M(t)/Ek/1 ABSENCE Queue performance program, no matrix inversions 
* Written by Joseph Hebert, Mar 95, Air Force Inst of Tech 
* for masters thesis: 
* Analysis and Modeling of an Airport Departure Queue 
************************************************************************ 

PARAMETER (LDA=100 0,PER=10 0) 
DOUBLE PRECISION PMATRX(LDA,LDA), POUT(LDA,LDA) 
DOUBLE PRECISION SUM, PROD 
REAL IMATRX(LDA,LDA), RATE(LDA,LDA), PSTAGE(PER,LDA) 
REAL RSERVE, PA(PER), RABSR, T, CHECK, TAXOUT 
REAL RARRIV(PER), NUMQ(PER), TIMQ(PER) 
REAL ENMQ2(PER), SDNUMQ(PER), ROLLTM(PER) 
INTEGER R, I, J, K, L, M, N, IHOUR, MAXNUM 
INTEGER  NS1, NS2, NUMPER, SNUM, ACC 

DATA PSTAGE/100000*0.0/ 
OPEN (UNIT = 10, FILE = 'rateabs.out') 
OPEN (UNIT = 11, FILE = 'probabs.out') 
OPEN (UNIT = 12, FILE = 'perfabs.out') 

* read in queue parameters 

PRINT*, "Input an integer for the accuracy factor.' 
READ*, ACC 
PRINT*, "Input the size of the time step in hours.' 
READ*, T 
PRINT*, "Input the number of time periods.' 
READ*, NUMPER 
PRINT*, "Input the service rate (takeoffs per TIME PERIOD).' 
READ*, RSERVE 
PRINT*, 'Input an integer for the maximum # of aircraft in the system' 
READ*, MAXNUM 
PRINT*, 'Input ',NUMPER,' periods of demand rate values.' 
READ*,   (RARRIV(IHOUR), IHOUR = 1, NUMPER) 
PRINT*, 'Input the number of stages of service and absence return.' 
READ*, NS1, NS2 
PRINT*, 'Input ',NUMPER,' probabilities of an absence.' 
READ*,   (PA(IHOUR), IHOUR = 1, NUMPER) 
PRINT*, "Input the absence return rate.' 
READ*, RABSR 
PRINT*, 'Input the average time from pushback to queue entry." 
READ*, TAXOUT 
PRINT*, "Input the initial number of aircraft in the system." 
READ*, SNUM 

* define the matrix dimensions and the initial condition probability vector 

N = 2**ACC 
R = MAXNUM*(NS1+NS2)+NS2+1 
PSTAGE(1,(NS1+NS2)*SNUM+1) = 1.0 

* transform entry and service rates into hourly rates 

DO 5 I = 1, NUMPER 
RARRIV(I) = RARRIV(I)/T 

5     CONTINUE 
RSERVE = RSERVE/T 

* create the r x r identity matrix 

DO 20 I = 1, R 
DO 10 J = 1, R 

IMATRX(I,J) = 0.0 
10    CONTINUE 
2 0    CONTINUE 

DO 3 0 I = 1, R 
IMATRX(I,I) =1.0 

3 0    CONTINUE 
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* compute rate matrices and perform numerical approximations 

DO 180 IHOUR = 1, NUMPER 
CALL RMATRX(IHOUR,RSERVE,RARRIV,NSl,NS2,R,RATE,RABSR,PA,MAXNUM) 

DO 50 I = 1, R 
DO 40 J = 1, R 

PMATRX(I,J) = IMATRX(I,J)+(T/N)*RATE(I,J) 
40        CONTINUE 
50      CONTINUE 

* check the rate matrix for errors 

DO 70 I = 1, R 
CHECK =0.0 
DO 60 J = 1, R 

CHECK = CHECK + RATE(I,J) 
60      CONTINUE 

IF (CHECK.GT.0.001.OR.CHECK.LT.-0.001) THEN 
PRINT*, 'There is an error in row ',1,' of the rate matrix' 
PRINT*, 'for hour number ',IHOUR,'.  Its row total is ',CHECK 
PRINT*, 'This program has been aborted.' 
GO TO 3 00 

ENDIF 
7 0    CONTINUE 

* matrix multiplication routine 

DO 13 0 M = 1, ACC 
DO 100 I = 1, R 

DO 90 J = 1, R 
PROD =0.0 
SUM =0.0 

DO 80 L = 1, R 
PROD = PMATRX(I,L)*PMATRX(L,J) 
SUM = PROD + SUM 

8 0 CONTINUE 
POUT(I,J) = SUM 

90       CONTINUE 
100   CONTINUE 

DO 120 I = 1, R 
DO 110 J = 1, R 

PMATRX(I,J) = POUT(I,J) 
110     CONTINUE 
12 0   CONTINUE 
13 0   CONTINUE 

* check the transition matrix for probabilistic consistency 

DO 150 I = 1, R 
CHECK =0.0 
DO 140 J = 1, R 

CHECK = CHECK + PMATRX(I,J) 
140     CONTINUE 

IF (CHECK.GT.1.001.OR.CHECK.LT.0.999) THEN 
PRINT*, 'There is an error in row ',1,' of the trans matrix' 
PRINT*, 'for hour number ',IHOUR,'Its row total is ',CHECK 
PRINT*, 'This program has been aborted.' 
GO TO 300 

ENDIF 
15 0   CONTINUE 

* compute next probability vector 

DO 170 I = 1, R 
SUM =0.0 
DO 160 J = 1, R 

PROD = PSTAGE(IHOUR,J)*PMATRX(J,I) 
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SUM = PROD + SUM 
160 -    CONTINUE 

PSTAGE(IHOUR+l,I) = SUM 
170   CONTINUE 
18 0   CONTINUE 

* test printout of the prob matrix 

WRITE (11, '(A27)') ("mekabs.f, The prob matrix is:') 
WRITE (11,'(Al)') 
DO 200 1=1, NUMPER+1 
WRITE (11,•(1X,700F7.4)') (PSTAGE(I,J),J = 1, R) 
SUM =0.0 
DO 190 J = 1, R 

SUM = SUM + PSTAGE(I,J) 
190     CONTINUE 

WRITE (11,' (A,1F8.4) ') "Row sum: ' , SUM 
WRITE (11,'(Al)') 

200   CONTINUE 

* calculate queue performance measures 

DO 260 I = 1, NUMPER 
NUMQ(I) =0.0 
DO 220 J = 1, MAXNUM 
DO 210 K = 1, (NS1+NS2) 

NUMQ(I) = NUMQ(I) + (J-l)*PSTAGE(1+1,J*(NS1+NS2)-NS1+K+1) 
ENMQ2(I) =ENMQ2(I) + ((J-l)**2)*PSTAGE(1+1,J*(NS1+NS2)-NS1+K+1) 

210      CONTINUE 
22 0    CONTINUE 

TIMQ(I) =0.0 
DO 250 J = 1, MAXNUM 
DO 23 0 K = 1, NS1 

TIMQ(I) = TIMQ(I) + 60*PSTAGE(I+1,(NS1+NS2)*J+K-NS1+1)* 
C ((NSl*(J-l)+K)/(NSl*RSERVE)+((J-1)*PA(I))/RABSR) 

23 0     CONTINUE 
DO 240 K = 1, NS2 
TIMQ(I) = TIMQ(I) + 60*PSTAGE(I + 1, (NS1+NS2) *J+K+D* 

C (J/RSERVE+K/(NS2*RABSR)+((J-1)*PA(I))/RABSR) 
24 0     CONTINUE 
25 0    CONTINUE 

SDNUMQ(I) = SQRT(ENMQ2(I) - NUMQ(I)**2) 
ROLLTM(I) = TAXOUT + TIMQ(I) 

2 6 0   CONTINUE 

* printout of the queue performance measures 

(A3 8) •)( 'ABSENCE MODEL, mekabs.f) 
(A60)') 
(A40)')('The time period length (hours) used was:') 
(1X,1F5.1)')(T) 
(A25)')("Accuracy level factor is:') 
(IX,113)')(ACC) 
(A23)')('Maximum system size is:') 
(IX,113)')(MAXNUM) 
(A31)')('Number of stages of service is:') 
(IX,113)')(NS1) 
(A38)')("Number of stages of absence return is:') 
(IX,113)")(NS2) 
(A33)')('The HOURLY service rate used was:') 
(1X,1F5.1)')(RSERVE) 
(A35)')('The average taxi-out time used was:') 
(1X,1F5.1)')(TAXOUT) 
(A34)')('The HOURLY demand rates used were:') 
(1X,100F5.1)')(RARRIV(I), 1=1, NUMPER) 
(A43)')("The HOURLY absence probabilities used were:') 
(1X,100F6.3)')(PA(I), 1=1, NUMPER) 
(A60)') 
(A48)')('The queue length ave and standard deviation 

WRITE 12, ' 
WRITE 12, ' 
WRITE 12, ' 
WRITE 12,' 
WRITE 12, ' 
WRITE 12, ' 
WRITE 12, ' 
WRITE 12, ' 
WRITE 12, ' 
WRITE 12, ' 
WRITE 12, ' 
WRITE 12, ' 
WRITE 12,' 
WRITE 12,' 
WRITE 12, ' 
WRITE 12, ' 
WRITE 12, 
WRITE 12, 
WRITE 12, 
WRITE 12, 
WRITE 12, 
WRITE 12, 
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C are:') 
WRITE (12, 
WRITE (12, 
WRITE (12, 
WRITE (12, 
WRITE (12, 
WRITE (12, 
WRITE (12, 
WRITE (12, 
WRITE (12, 

(A60)') 
(1X,100F5.1)')(NUMQ(I), 1=1, NUMPER) 
(1X,100F5.1)')(SDNUMQ(I), 1=1, NUMPER) 
(A60) ') 
(A37)')('The ave delay and roll-out times are:') 
(A60)') 
(1X,100F5.1)')(TIMQ(I), 1=1, NUMPER) 
(A60)') 
(1X,100F5.1)')(ROLLTM(I), 1=1, NUMPER) 

*test printout of the last rate matrix 

300   WRITE (10,'(A32)') ('mekabs.f, The last rate matrix is:') 
WRITE (10,'(Al)') 
DO 310 I = 1, R 
WRITE (10,'(1X,700F9.4)') (RATE(I,J),J = 1, R) 
WRITE (10,'(Al)') 

310   CONTINUE 

END 

* subroutine to create the absence model rate matrix 

SUBROUTINE RMATRX(IHOUR,RSERVE,RARRIV,NS1,NS2,R,RATE, 
C     RABSR,PA,MAXNUM) 
REAL RSERVE, RABSR, PA(100) 
REAL RARRIV(100), RATE(1000,1000) 
INTEGER R, NS1, NS2, I, J, IHOUR, MAXNUM 

DO 2 0 I = 1, R 
DO 10 J = 1, R 

RATE(I,J) = 0.0 
10    CONTINUE 
2 0    CONTINUE 

DO 30 I = 1, R-NS1-NS2 
RATE(I,I+NS1+NS2) = RARRIV(IHOUR) 

3 0    CONTINUE 
DO 40 I = 2, R 

RATE(I,I) = -NS2*RABSR-RARRIV(IHOUR) 
RATE(1,1-1) = NS2*RABSR 

40    CONTINUE 
DO 60 I = 1, MAXNUM 

DO 50 J = 1, NS1 
RATE((NSl+NS2)*I-J+2,(NS1+NS2)*I-J+1) = NS1*RSERVE 

RATE((NS1+NS2)*I-J+2,(NS1+NS2)*I-J+2) = 
C -RARRIV(IHOUR) - NS1*RSERVE 

5 0      CONTINUE 
RATE((NSl+NS2)*I-NSl+2,(NS1+NS2)*I-NS1+1) = 

C PA(IHOUR)*NS1*RSERVE 
RATE((NSl+NS2)*I-NSl + 2, (NS1+NS2)*(1-1)+1) = 

C (l-PA(IHOUR))*NS1*RSERVE 
6 0    CONTINUE 

DO 70 I = 1, NS2 
RATE(R-I+1,R-I+1)=-NS2*RABSR 

70    CONTINUE 
DO 80 I = 1, NS1 

RATE(R-NS2-I+1,R-NS2-I+1) = -NS1*RSERVE 
80    CONTINUE 

RATE(1,1) = -RARRIV(IHOUR) 
RETURN 
END 
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******************        mekabsinv.f        ***************************** 
* M(t)/Ek/1 ABSENCE Queue performance program, w/ matrix inversions 
* Written by Joseph Hebert, Mar 95, Air Force Inst of Tech 
* for masters thesis: 
* Analysis and Modeling of an Airport Departure Queue 
**************************************************************************** 

PARAMETER (LDA=10 00,LDAINV=1000,PER=100) 
DOUBLE PRECISION PMATRX(LDA,LDA), POUT(LDA,LDA) 
DOUBLE PRECISION SUM, PROD, PINV(LDAINV,LDAINV) 
REAL IMATRX(LDA,LDA), RATE(LDA,LDA), PSTAGE(PER,LDA) 
REAL RSERVE, PA(PER), RABSR, T, CHECK, TAXOUT 
REAL RARRIV(PER), NUMQ(PER), TIMQ(PER) 
REAL ENMQ2(PER), SDNUMQ(PER), ROLLTM(PER) 
INTEGER R, I, J, K, L, M, N, IHOUR, MAXNUM 
INTEGER  NS1, NS2, NUMPER, SNUM, ACC 

COMMON /WORKSP/  RWKSP 
REAL RWKSP(149016) 
CALL IWKIN(149016) 

DATA PSTAGE/100000*0.0/ 
OPEN (UNIT = 10, FILE = 'rateabs.out') 
OPEN (UNIT = 11, FILE = 'probabs.out') 
OPEN (UNIT = 12, FILE = 'perfabsinv.out') 

* read in queue parameters 

PRINT*, "Input an integer for the accuracy factor.' 
READ*, ACC 
PRINT*, 'Input the size of the time step in hours.' 
READ*, T 
PRINT*, 'Input the number of time periods.' 
READ*, NUMPER 
PRINT*, 'Input the service rate (takeoffs per TIME PERIOD).' 
READ*, RSERVE 
PRINT*, 'Input an integer for the maximum # of aircraft in the system' 
READ*, MAXNUM 
PRINT*, 'Input ',NUMPER,' periods of demand rate values.' 
READ*,   (RARRIV(IHOUR), IHOUR = 1, NUMPER) 
PRINT*, 'Input the number of stages of service and absence return.' 
READ*, NS1, NS2 
PRINT*, 'Input ',NUMPER,' probabilities of an absence.' 
READ*,   (PA(IHOUR), IHOUR = 1, NUMPER) 
PRINT*, 'Input the absence return rate.' 
READ*, RABSR 
PRINT*, 'Input the average time from pushback to queue entry.' 
READ*, TAXOUT 
PRINT*, 'Input the initial number of aircraft in the system.' 
READ*, SNUM 

* define the matrix dimensions and the initial condition probability vector 

N = 2**ACC 
R = MAXNUM*(NS1+NS2)+NS2+1 
PSTAGE(1,(NS1+NS2)*SNUM+1) = 1.0 

* transform entry and service rates into hourly rates 

DO 5 I = 1, NUMPER 
RARRIV(I) = RARRIV(I)/T 

5     CONTINUE 
RSERVE = RSERVE/T 

* create the r x r identity matrix 

DO 20 I = 1, R 
DO 10 J = 1, R 

IMATRX(I,J) =0.0 
10    CONTINUE 
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2 0    CONTINUE 
DO 3 0 I = 1, R 

IMATRX(I,I) =1.0 
3 0    CONTINUE 

* compute rate matrices and perform numerical approximations 

DO 18 0 IHOUR = 1, NUMPER 
CALL RMATRX(IHOUR,RSERVE,RARRIV,NS1,NS2,R,RATE,RABSR,PA,MAXNUM) 

DO 50 I = 1, R 
DO 40 J = 1, R 

PMATRX(I,J) = IMATRX(I,J)-(T/N)*RATE(I,J) 
40        CONTINUE 
50      CONTINUE 

* check the rate matrix for errors 

DO 70 I = 1, R 
CHECK =0.0 
DO 60 J = 1, R 

CHECK = CHECK + RATE(I,J) 
60      CONTINUE 

IF (CHECK.GT.0.001.OR.CHECK.LT.-0.001) THEN 
PRINT*, 'There is an error in row ',!,'   of the rate matrix' 
PRINT*, 'for hour number ',IHOUR,'.  Its row total is ',CHECK 
PRINT*, 'This program has been aborted.' 
GO TO 300 

ENDIF 
70    CONTINUE 

* call IMSL double precision matrix inversion subroutine 

CALL DLINRG(R,PMATRX,LDA,PINV,LDAINV) 

* matrix multiplication routine 

DO 130 M = 1, ACC 
DO 100 I = 1, R 

DO 90 J = 1, R 
PROD =0.0 
SUM =0.0 

DO 80 L = 1, R 
PROD = PINV(I,L)*PINV(L,J) 
SUM = PROD + SUM 

80 CONTINUE 
POUT(I,J) = SUM 

90       CONTINUE 
100   CONTINUE 

DO 120 I = 1, R 
DO 110 J = 1, R 

PINV(I,J) = POUT(I,J) 
110     CONTINUE 
12 0   CONTINUE 
13 0   CONTINUE 

* check the transition matrix for probabilistic consistency 

DO 150 I = 1, R 
CHECK =0.0 
DO 140 J = 1, R 

CHECK = CHECK + PINV(I,J) 
140     CONTINUE 

IF (CHECK.GT.1.001.OR.CHECK.LT.0.999) THEN 
PRINT*, 'There is an error in row ',1,' of the trans matrix' 
PRINT*, 'for hour number ',IHOUR,'Its row total is ',CHECK 
PRINT*, 'This program has been aborted.' 
GO TO 300 

ENDIF 
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150   CONTINUE 

* compute next probability vector 

DO 170 I = 1, R 
SUM =0.0 
DO 160 J = 1, R 

PROD = PSTAGE(IHOUR,J)*PINV(J,I) 
SUM = PROD + SUM 

160     CONTINUE 
PSTAGE(IHOUR+l,I) = SUM 

170   CONTINUE 
180   CONTINUE 

* test printout of the prob matrix 
WRITE (11, ■(A27)') ('mekabsinv.f, The prob matrix is:') 
WRITE (11,■(Al)') 
DO 200 1=1, NUMPER+1 
WRITE (11,'(1X,700F7.4)') (PSTAGE(I,J),J = 1, R) 
SUM =0.0 
DO 190 J = 1, R 

SUM = SUM + PSTAGE(I,J) 
190     CONTINUE 

WRITE (11,•(A,1F8.4)') 'Row sum: ',SUM 
WRITE (11,'(Al)') 

2 00   CONTINUE 

* calculate queue performance measures 
DO 260 1=1, NUMPER 
NUMQ(I) =0.0 
DO 22 0 J = 1, MAXNUM 
DO 210 K = 1, (NS1+NS2) 

NUMQ(I) = NUMQ(I) + (J-l)*PSTAGE(1+1,J*(NS1+NS2)-NS1+K+1) 
ENMQ2(I) =ENMQ2(I) + ((J-l)**2)*PSTAGE(1+1,J*(NS1+NS2)-NSl+K+1) 

210     CONTINUE 
22 0    CONTINUE 

TIMQ(I) =0.0 
DO 250 J = 1, MAXNUM 
DO 23 0 K = 1, NS1 

TIMQ(I) = TIMQ(I) + 60*PSTAGE(I+1,(NS1+NS2)*J+K-NS1+1)* 
C ((NSl*(J-l)+K)/(NSl*RSERVE)+((J-1)*PA(I))/RABSR) 

23 0     CONTINUE 
DO 240 K = 1, NS2 
TIMQ(I) = TIMQ(I) + 60*PSTAGE(I+1,(NS1+NS2)*J+K+1)* 

C (J/RSERVE+K/(NS2*RABSR)+((J-1)*PA(I))/RABSR) 
240     CONTINUE 
250    CONTINUE 

SDNUMQ(I) = SQRT(ENMQ2(I) - NUMQ(I)**2) 
ROLLTM(I) = TAXOUT + TIMQ(I) 

260   CONTINUE 

* printout of the queue performance measures 
(A32)')('ABSENCE MODEL, mekabsinv.f') 
(A60)') 
(A40)')('The time period length (hours) used was:') 
(1X,1F5.1)')(T) 
(A25)')('Accuracy level factor is:') 
(IX,113)')(ACC) 
(A23)')('Maximum system size is:') 
(IX,113)')(MAXNUM) 
(A31)')('Number of stages of service is:') 
(IX,113)')(NS1) 
(A38)')('Number of stages of absence return is:') 
(IX,113)')(NS2) 
(A33)')('The HOURLY service rate used was:') 
(1X,1F5.1)■)(RSERVE) 
(A35)')('The average taxi-out time used was:') 
(1X,1F5.1)•)(TAXOUT) 
(A34)')('The HOURLY demand rates used were:') 

WRITE (12, ' 
WRITE (12, ' 
WRITE (12,' 
WRITE (12,' 
WRITE (12, ' 
WRITE (12,' 
WRITE (12, ' 
WRITE (12, ' 
WRITE (12,' 
WRITE (12, ' 
WRITE (12,' 
WRITE (12, 
WRITE (12, ' 
WRITE (12, 
WRITE (12, 
WRITE (12, 
WRITE (12, 
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WRITE (12, 
WRITE (12, 
WRITE (12, 
WRITE (12, 
WRITE (12, 

C are:') 
WRITE (12, 
WRITE (12, 
WRITE (12, 
WRITE (12, 
WRITE (12, 
WRITE (12, 
WRITE (12, 
WRITE (12, 
WRITE (12, 

(1X,100F5.1)')(RARRIV(I), 1=1, NUMPER) 
(A43)')('The HOURLY absence probabilities used were:') 
(1X,100F6.3)')(PA(I), 1=1, NUMPER) 
(A60)') 
(A48)')('The queue length ave and standard deviation 

(A60)') 
(1X,100F5.1)')(NUMQ(I), 1=1, NUMPER) 
(1X,100F5.1)')(SDNUMQ(I), 1=1, NUMPER) 
(A60)') 
(A37)')("The ave delay and roll-out times are:') 
(A60) ') 
(1X,100F5.1)')(TIMQ(I), 1=1, NUMPER) 
(A60)') 
(1X,100F5.1)•)(ROLLTM(I), 1=1, NUMPER) 

*test printout of the last rate matrix 
300   WRITE (10,'(A32)') ('mekabsinv.f, The last rate matrix is:') 

WRITE (10,'(Al)') 
DO 310 I = 1, R 
WRITE (10,'(1X,700F9.4)') (RATE(I,J),J = 1, R) 
WRITE (10,'(Al)') 

310   CONTINUE 

END 

* subroutine to create the absence model rate matrix 
SUBROUTINE RMATRX(IHOUR,RSERVE,RARRIV,NS1, NS2,R,RATE, 

C     RABSR,PA,MAXNUM) 
REAL RSERVE, RABSR, PA(10 0) 
REAL RARRIV(100), RATE(1000,1000) 
INTEGER R, NS1, NS2, I, J, IHOUR, MAXNUM 

DO 20 I = 1, R 
DO 10 J = 1, R 

RATE(I,J) = 0.0 
10    CONTINUE 
2 0    CONTINUE 

DO 30 I = 1, R-NS1-NS2 
RATE(I,I+NS1+NS2) = RARRIV(IHOUR) 

3 0    CONTINUE 
DO 40 I = 2, R 

RATE(I,I) = -NS2*RABSR-RARRIV(IHOUR) 
RATE(1,1-1) = NS2*RABSR 

40    CONTINUE 
DO 60 I = 1, MAXNUM 

DO 50 J = 1, NS1 
RATE((NSl+NS2)*I-J+2,(NS1+NS2)*I-J+1) = NS1*RSERVE 

RATE((NSl+NS2)*I-J+2,(NS1+NS2)*I-J+2) = 
C -RARRIV(IHOUR) - NS1*RSERVE 

50      CONTINUE 
RATE((NS1+NS2)*I-NSl+2,(NS1+NS2)*I-NS1+1) = 

C PA(IHOUR)*NS1*RSERVE 
RATE((NSl+NS2)*I-NSl+2,(NS1+NS2)*(1-1)+1) = 

C (1-PA(IHOUR))*NS1*RSERVE 
60    CONTINUE 

DO 70 I = 1, NS2 
RATE(R-I+1,R-I+1)=-NS2*RABSR 

7 0    CONTINUE 
DO 80 I = 1, NS1 
RATE(R-NS2-I+1,R-NS2-I+1) = -NS1*RSERVE 

80    CONTINUE 
RATE(1,1) = -RARRIV(IHOUR) 
RETURN 
END 
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Appendix 5: Model Results 

In order to clarify the observed roll-out times shown in Appendix 1, average roll- 

out times were computed for each hour of the day. These averages were calculated using 

the roll-out times for the period from 30 minutes before until 30 minutes after each hour. 

The average roll-out times are displayed in all the model output plots which follow. 

A5.1 Friday, 3 June 

The weather on 3 June was Visual Meteorological Conditions (VMC) throughout 

the day. The operating configuration was runway 22/31 from 6:00 to 7:00 AM, 4/31 from 

7:00 AM to 1:00 PM, 31/4 from 1:00 to 4:00 PM, 22/31 from 4:00 to 5:00 PM, 22/13 

from 5:00 to 9:00 PM, and 31/4 for the remainder of the day. 
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Figure A5.1 Exponential Model Results - 3 June 
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ERUVNG-2 MODEL 
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Figure A5.2 Erlang-2 Model Results - 3 June 

A5.2 Saturday, 4 June 

The departure demand on the weekends was observed to be significantly less than 

during the weekdays. The delays experienced were correspondingly lower. The weather 

on 4 June was VFR for the entire day. The operating runway configuration was 22/31 

from 6:00 to 9:00 AM, 31/4 from 9:00 to 11:00 AM, 31/31 from 11:00 AM to 1:00 PM, 

and 13/13 for the rest of the day. The airport records indicate a runway closure occurred 

between 9:00 and 10:00 AM. 
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Figure A5.3 Exponential Model Results - 4 June 

This output indicates that the airport had an effective service rate of 26 take-offs 

per hour for the first part of the day. The rate was significantly less during the afternoon. 
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Figure A5.4 ErIang-2 Model Results - 4 June 
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This model result demonstrates that the effective service rate in the AM was 

roughly 26 take-offs per hour. The rate in the PM was significantly less. The results 

indicate that it was less than 21 take-offs per hour during this time. 

A5.3 Sunday, 5 June 

The weather was VFR for the entire day. The operating configuration was runway 

13/13 from 6:00 to 11:00 AM, and 22/13 for the remainder of the day. 
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Figure A5.5 Exponential Model Results - 5 June 
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Figure A5.6 Erlang Model Results - 5 June 

A5.4 Monday, 6 June 

This day was one of the most interesting days in the study. There was a very 

significant pattern of delays experienced on this day. The weather was less than ideal for 

much of the day. The operating runway configuration was 22/13 throughout the day. The 

weather was reported as VFR1 from 6:00 to 9:00 AM, VFR2 from 9:00 to 11:00 AM, 

IFR from 11:00 AM to 1:00 PM, VFR2 from 1:00 PM to 7:00 PM, and VFR1 for the 

remainder of the day. 
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EXPONENTIAL MODEL 
Monday, 6 June 
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Figure A5.7 Exponential Model Results - 6 June 

This model demonstrates a fairly good fit to the data when an effective service rate 

of 24 take-offs per hour is used. 

ERLANG-2 MODEL 
Monday, 6 June 

30 

^.25   - 

1   , c20- 

15 

s10 

I   5 + 

- Observed 

• Serv=23 

CMTfCOOOOCM'tCOCOOCVj^- 

flme'of Day    *~    '" 

Figure A5.8 Erlang Model Results - 6 June 

This graph demonstrates a similar ability to correlate variations in the roll-out time 

observed to the time-variant take-off demand process. 
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Figure A5.9 Absence Model Results - 6 June 

This model also demonstrates a reasonable fit to the data. This model was 

performed assuming a take-off rate of 35 per hour. The probability that the runway would 

not be available to service an aircraft in this queue was estimated to be 0.2. 

A5.5 Tuesday, 7 June 

This day also experienced a significant weather pattern. In fact, it appeared to be 

worse than the weather experienced on the 6th of June. In addition, the runway operating 

configurations used on this day had lower departure capacities.   However, the resulting 

effective service rates for the models were higher. A possible explanation is given in 

Chapter 6, page 6-4. The weather was IFR from 06:00 to 8:00 AM, VFR2 from 8:00 to 

9:00 AM, VFR1 from 9:00 to 10:00 AM, VFR2 from 10:00 to 11:00 AM, and VFR1 for 

the remainder of the day. The operating configuration was 22/13 from 6:00 to 7:00 AM, 

22/31 from 7:00 AM to 12:00 PM, 31/4 from 12:00 to 1:00 PM, 22/31 from 1:00 to 4:00 

PM , and 31/4 for the remainder of the day. 
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Figure A5.10 Exponential Model Results - 7 June 

This model demonstrates good correlation to the roll-out times actually observed. 
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Figure A5.ll Erlang-2 Model Results - 7 June 

The Erlang-2 model demonstrates a good fit for the data on the 7th of June. It 

appears that the airport was operating with an effective departure rate of 26 take-offs per 
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hour. It also appears that the effective rate was somewhat greater for the first two hours 

of the day. 

ABSENCE MODEL 
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Figure A5.12 Absence Model Results - 7 June 

These results were generated using a service rate of 35 take-offs per hour. By 

analyzing the peak AM period, the probability of an absence was estimated to be 0.23. 
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